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1. Supplementary Methods 

 

1.1 Computational Methods   

 

1.1.1 Model preparation of the initial “down” state 

A model of the “down” state of the glycosylated spike structure and CHARMM36 force field 

parameters31,32 was obtained from Casalino et al,8 modeled using the cryoEM structure (PDB ID: 

6VXX);5 in this model hydrogen atoms were added using ionization states present in solution at 

pH 7.4.  The stalk and membrane were excluded, and only residues 16-1140 of each trimer were 

used (Fig. 1A). The system was solvated in a cubic box of TIP3P33 explicit water molecules with 

at least 10 Å between the protein and box edges and 150 mM NaCl using VMD,34 yielding a 

system size of 490,621 atoms. The GPU-accelerated Amber1835,36,37,38 molecular dynamics (MD) 

engine was used, which gave a 16-fold speedup in dynamics propagation on a GPU vs. CPU. To 

enable the use of the Amber18 software package, the Chamber program39 was used to convert 

the CHARMM36 force field parameters into an Amber readable format.  

 

To relieve unfavorable interactions, the solvated system was subjected to a two-stage energy 

minimization followed by a two-stage equilibration. To minimize the energy of the system, the 

solvent was first minimized for 10,000 steps with harmonic position restraints (force constant of 

100 kcal/mol /Å2) applied to the sugars and proteins followed by an unrestrained minimization of 

the entire system for 100,000 steps. To equilibrate the energy-minimized system, the system was 

incrementally heated to 300 K over 300 ps in the NVT ensemble followed by a 1-ns equilibration 

in the NPT ensemble. A production simulation was then carried out in the NPT ensemble for 20 

ns on the Triton Shared Computing Cluster at San Diego Supercomputer Center (SDSC). 

Equilibration and production simulations were carried out with a 2 fs timesteps and SHAKE40 

constraints on bonds to hydrogens. Pressure and temperature were controlled with the Monte 

Carlo barostat (with 100 fs between attempts to adjust the system volume) and the Langevin 

thermostat (1 ps-1 collision frequency), respectively. Long-range electrostatics were accounted 

for with the PME method41 using a 10 Å cutoff for short-range, non-bonded interactions. To 

provide more extensive sampling of the closed state, we selected a set of 24 equally weighted 

conformations (“basis states”) from the latter 5 ns of the production simulation for a weighted 
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ensemble (WE) simulation; this portion of the simulation exhibited reasonable convergence of 

the Cα root-mean-squared deviation (RMSD) from the initial, minimized conformation 

(Supplemental Fig. 6).   

 

1.1.2 Weighted ensemble simulations 

The weighted ensemble (WE) path sampling strategy orchestrates an ensemble of parallel 

trajectories with periodic communication to enhance the sampling of pathways for rare events 

without biasing the dynamics.15 In particular, a resampling step is applied at fixed time intervals 

𝜏 to enrich for promising trajectories that have advanced towards the target state – typically, 

along a progress coordinate that has been divided into bins. Trajectories are all initially assigned 

equal statistical weights and rigorously tracked to ensure that all weights sum to one at all times 

of the simulation, introducing no bias in the dynamics.12 During the resampling step, trajectories 

that transition to empty bins are replicated and their corresponding weights split evenly between 

the resulting child trajectories; trajectories that do not make progress are occasionally 

terminated with their respective weights merged to other trajectories that will be 

continued. (Supplemental Fig. 1) 

 

WE simulations can be run under non-equilibrium steady state or equilibrium conditions and can 

therefore provide equilibrium (e.g., state populations) and non-equilibrium observables (e.g., rate 

constants), respectively. To maintain non-equilibrium steady-state conditions, trajectories that 

reach the target state are “recycled” by initiating a new trajectory from the initial state with the 

same trajectory weight; steady-state WE simulations therefore require that the target state be 

defined in advance of the simulation, but are more efficient in generating successful events than 

equilibrium WE simulations. On the other hand, equilibrium WE simulations do not require a 

fixed definition of the target state and therefore enable refinement of the target-state definition at 

any time during the simulation. Here, we leveraged the advantages of both non-equilibrium 

steady state and equilibrium WE simulations: steady-state simulations were used to more 

efficiently generate successful pathways trajectories once the target state could be defined and 

equilibrium simulations were used to further explore and refine the definition of the target state.  
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All WE simulations were run using the open-source, highly scalable WESTPA software 

package42 (Supplemental Fig. 7) with a fixed time interval 𝜏 of 100 ps for resampling and a 

target number of 8 trajectories/bin. Details of the progress coordinate and bin spacing for each 

WE simulation are provided below.   

 

Extensive sampling of the initial “down” state 

To extensively sample the initial “down” state, we ran an equilibrium WE simulation starting 

from randomly selected conformations from the basis states discussed above. A two-dimensional 

progress coordinate was used. One dimension consisted of the distance between the centers of 

mass (COM) of (i) Cα atoms of the entire system and all atoms in the four main beta strands of 

the RBD (residues 375-380, 394-404, 431-438, 508-517; refers to RBD from chain A unless 

otherwise specified), and (ii) Cα atoms of the entire system and all atoms in the structured region 

of the helical core domain (residues 747-784, 946-967, 986-1034 from each of the three chains). 

The second dimension consisted of the Cα RMSD of the entire system and all atoms in the four 

main beta strands of the RBD from the initial model of the “down”-state structure after 1 ns 

equilibration. Progress coordinates were calculated using CPPTRAJ.43 This initial WE 

simulation was run for 8.77 days on 80 P100 GPUs on Comet at the San Diego Supercomputer 

Center (SDSC) collecting a comprehensive sampling of ~7.5 µs aggregate simulation time. Bin 

spacing was periodically monitored and adjusted to maximize efficient sampling. 

  

Due to a typo in the CPPTRAJ atom selection (i.e., “and” instead of “of”), the progress 

coordinate above was not the one we originally intended. Our intention was to use 1) the COM 

distance between the Cα atoms of the four main beta sheets of the RBD and the Cα atoms of the 

structured region of the helical core domain and 2) the Cα RMSD of the four main beta sheets of 

the RBD from the initial model of the “down”-state structure. As shown in Figs. 2F and S2, our 

WE simulations with this progress coordinate nonetheless capture the large-scale protein 

transitions that are evident with the intended progress coordinate, but on a more compressed 

scale. 

 

Simulations of spike opening 
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After extensive sampling of the “down” state, exploratory WE simulations were run to determine 

effective progress coordinates and binning to capture the opening of the spike protein. Based on 

these simulations, we found that taking the RMSD from the target “up” state was much more 

effective than taking the RMSD from the initial “down” state. The target state, with one RBD in 

the “up” conformation, modeled by Casalino et al.8 using the cryoEM structure (PDB ID: 

6VSB),4 was subject to 1 ns of equilibration using identical methods as described above for the 

closed structure. The RMSD of the initial state from the target state was calculated as 11.5 Å. 

  

Next, an independent, equilibrium WE simulation was conducted using the two-dimensional 

progress coordinate described above for sampling the “down” state, but taking the RMSD from 

the target “up” state instead of the initial “down” state and using the bin spacing determined by 

the exploratory simulations. The WE simulation was stopped for analysis after 1729 iterations, 

19.64 days on 100 NVIDIA V100 GPUs on Longhorn at TACC, collecting an aggregate of ~51.5 

µs of sampling and 106 pathways from the “down” to the “open” state. Finally, another WE 

simulation that was under non-equilibrium steady-state conditions was conducted to maximize 

sampling of transitions from the “down” to the “up” states. This WE simulation started from 

iteration 1576 of the previous WE simulation, which was the last iteration before the RBD-COM 

distance was 9.0 Å or greater, was stopped for analysis after 3000 iterations, 25.03 days later, on 

100 NVIDIA V100 GPUs on Longhorn at TACC, collecting an additional ~69.2 µs of sampling 

and 204 pathways from the “down” to the “open” state. The WESTPA software was shown to 

scale almost linearly on these 100 NVIDIA V100 GPUs on Longhorn (Supplemental Fig. 7), 

which enabled fast and efficient simulation of the spike.  

  

1.1.3 Analysis of weighted ensemble simulations 

Number of successful pathways 

The successful pathways that reached the “up” state (8.9 Å ≤ RBD-COM distance) or the “open” 

state (9.9 Å ≤ RBD-COM distance) were obtained by counting all arrivals to that particular state 

at every WE iteration, which yielded 204 and 106 pathways, respectively. We consider these 

pathways to be statistically independent pathways. The splitting trees for the 204 and 106 

pathways, respectively, can be seen in Supplemental Figs. 8 and 9, respectively, which shows 

trajectory segments shared by the pathways and points of splitting the pathways. The number of 
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pathways is similar to that obtained from calculating the autocorrelation function of arrivals to 

the “up” and “open” states at a particular WE iteration. For instance, at the end of the WE 

simulation that sampled the “open” state, there were 1824 trajectories in total and 1193 

trajectories that were part of the “open”-state ensemble (defined in later sections as 9.0 Å ≤ 

RBD-COM distance). Out of the 1193 trajectories that reached the “open”-state ensemble, 133 

trajectories were calculated to be statistically independent from calculating the autocorrelation 

function of the number of arrivals to the “open”-state ensemble19 (Supplemental Fig. 10). The 

correlation time was calculated to be 16 WE iterations or 1.6 ns so the trajectories that did not 

share a common segment for 16 iterations from the last point in the trajectory were considered to 

be statistically independent. By checking these multiple independent pathways that reached the 

“up” or “open” states, we were able to confirm reproducibility of the identified glycan and 

residue interactions involved in the particular transition. For calculating the shortest and longest 

transition times, all successful pathways were taken into account. The first 25% of all successful 

pathways were disregarded to obtain the most probable transition times, however, since the 

initial transitions can skew the transition time to be shorter than it is normally (Supplemental 

Figs. 11 and 12).  

 

State definitions 

Based on our WE simulations, key states were defined as follows. The “down”-state ensemble 

consisted of structures with RMSD ³ 11.0 Å and RBD-COM distance ≤ 7.5 Å, ~13 µs aggregate 

simulation time. Note that the entire progress coordinate array had to satisfy the criteria to be 

counted as part of the ensemble. The “up”-state ensemble was defined as 8.5 Å ≤ RBD-COM 

distance < 9.0 Å, ~ 6.5 µs aggregate simulation time. The “open”-state ensemble was defined as 

having an RBD-COM distance ³ 9.0 Å, ~ 4.9 µs aggregate simulation time.  

 

Trajectory analysis 

Trajectories were visualized using VMD.34 Glycans, salt bridge, and hydrogen bonding 

interactions involved in the “down” to “up” and “open” transition were first visually identified. 

Next, distances between the identified residues were calculated using cpptraj43 for all 310 

successful pathways, and plotted with matplotlib.44 To obtain the percentage of the most 

probable transition time that had a certain salt bridge, the distance between the atoms/residues of 
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the salt bridge was measured, and the total time in which the distance was less than 3.5 Å was 

calculated. The total time for each pathway was calculated and averaged to obtain the final 

percentage. To obtain the number of successful pathways that had a certain quantity, e.g., salt 

bridge, glycan-residue contact, the pathway was counted if the distance was less than 3.5 Å in at 

least one of the conformations, sampling conformations every 100 ps. Contact maps calculating 

the distance between the RBD (from chain A) and all other residues and glycans were generated 

using MDAnalysis45,46 (Supplemental Video 5). Structures for figures and movies were 

generated using VMD, including NanoShaper47 surface representation.     

 

Solvent accessible surface area (SASA) was calculated using a protocol presented in Casalino et 

al.8 involving the measure sasa command within VMD and a solvent probe radius of 1.4 Å. The 

surface area of the Receptor Binding Motif (RBM, residues 438-508 in chain A) that was 

shielded by glycans was calculated by taking the difference between the SASA of the “naked” 

spike (without glycans) and the SASA of the glycosylated spike (with glycans). Individual 

contributions to shielding of the RBM by glycans at positions N165-B, N234-B, N343-B were 

also calculated by considering only the respective glycans in the SASA calculation of the 

glycosylated spike. 

 

Analysis of residues mutated in emerging SARS-CoV-2 strains  

To date, the following SARS-CoV-2 variants have been identified (with mutations to spike noted 

in parentheticals): B.1 (D614G), B.1.1.7 (H69-V70 deletion, Y144-Y145 deletions,  N501Y, 

A570D, D614G, P681H, T716I, S982A, D1118H), B.1.351: (L18F, D80A, D215G, R246I, 

K417N, E484K, N501Y, D614G, A701V), P1 (L18F, T20N, P26S, D138Y, R190S, K417T, 

E484K, N501Y ,D614G, H655Y, T1027I) and CAL.20C (L452R, D614G).28 To examine 

potential implications of these mutations on Spike opening mechanics, we have monitored the 

neighboring residues of key WT residues as a function of the opening mechanism. 

MDAnalysis45,46 was used to identify residues whose center of mass was within 10 Å of the 

center of mass of the key residue of interest. For each contact, the fraction of conformations in 

the “down”, “up”, and “open” ensembles containing the contact is provided. Contacts were only 

considered if they exist within > 5% of all conformations and if the contacting pairs were 

separated by more than three peptide bonds in one-dimensional sequence.  
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1.2	ManifoldEM method 

 

1.2.1 Background 

The set of algorithms now under the name ManifoldEM48 employ a three-step procedure22 to 

characterize conformational variations in a dataset from single-particle cryo-EM of a molecule in 

thermal equilibrium.  In the first step, which can be performed on any of the existing cryo-EM 

platforms, data are classified by orientation, and prepared as aligned image stacks. In the second 

step, for each projection direction (PD) data falling into the angular aperture are analyzed as a 

manifold and represented in a low-dimensional space spanned by what is now termed 

“conformational coordinates,”48 equivalent to collective motion coordinates.  In the third step, 

the manifold representations resulting from the second step, one for each projection direction, are 

reconciled and combined across the angular sphere to obtain a consolidated representation.  From 

this an energy landscape can be obtained, enabling a functional analysis of the molecule,48 and 

3D volumes can be captured along inferred trajectories. 

 

1.2.2 Preprocessing 

The initial image-stack we received from McLellan and colleagues corresponding to PDB ID: 

6VSB4 contained 631,920 snapshots. This initial image stack was pruned by approximately 10% 

(from 631,920 to 578,588 particles) to remove artifacts. Additional 3D Auto-Refinement via 

RELION49 was performed to realign all images. Next RELION 2D Classification was used to 

remove an additional 1% of particles, leaving the final count of 574,324. The consensus 

refinement in RELION displayed a Fourier Shell Correlation (FSC0.143) of 4.3 Å. In parallel, this 

stack was separately refined using CryoSPARC50 non-uniform refinement with a GSFSC 

resolution of 3.5 Å. 

 

These two refinements were next compared within the preliminary steps of ManifoldEM. 

Although both reconstructions appeared fine, we found upon closer examination that the 

RELION refinement encountered a problem of preferred orientations, where thousands of 

particles had been clumped within nearly the same local area (i.e., nearly identical Euler 

coordinates) of the 2-sphere. In contrast, the CryoSPARC non-uniform refinement produced 
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much more uniformly-distributed angular assignments, albeit with a lower average occupancy 

per PD.  2D conformational coordinate movies obtained in ManifoldEM from the CryoSPARC 

alignment proved superior to those using RELION. While the CryoSPARC alignment was 

chosen for all subsequent steps in ManifoldEM, the RELION protocol was not altogether without 

its own merit. We additionally ran RELION focused 3D Classification using the angular 

alignment from CryoSPARC with a mask around the RBDs. We obtained classes with different 

configurations of the RBD, including one class in the RBD-“down” conformation 

(Supplemental Fig. 4). The original study,4 in contrast, found no such particles - nor did other 

labs to which the data were sent for further analysis. Importantly, the discovery of these missing 

particles explains the presence of RBD-“down” volumes constructed along the 3DVA51 “reaction 

coordinate” discovered in that study.4 

 

1.2.3 Manifold embedding 

We next set up a more thorough ManifoldEM analysis using the cryoSPARC alignment. First, a 

number of initial inputs are required for the ManifoldEM pipeline to tessellate the orientational 

2-sphere into a finite number of PDs. These are (1) Pixel size: 1.047 Å; (2) Resolution: 3.5 Å; (3) 

Object diameter: 335 Å (taken as the maximum width of the average volume); and (4) Aperture 

index: {1-5}. The aperture index is a flexible parameter that controls the angular width of each 

PD, such that a larger aperture index corresponds to more images assigned to each PD from a 

larger region of angular space. After experimenting with several aperture indices and evaluating 

the corresponding PD statistics and 2D movie qualities, we chose aperture index 5 for all future 

computations. This measure provided us with 1678 PDs thoroughly spread out in angular space, 

with a handful of regions with heightened PD-occupancy. When displayed as a histogram, the 

occupancy of PDs exhibited a chi-squared distribution, with the majority of PDs housing around 

230 images and a rightward tail reaching approximately 800 images in the most highly-occupied 

PD. 

 

Following the ManifoldEM framework, 1678 manifolds were constructed from the images in 

each corresponding PD via the Diffusion Maps52 framework.  Following Dashti et al.,22 

Nonlinear Laplacian Spectral Analysis (NLSA)53 was then performed on the eigenvectors of 

these high-dimensional manifolds to extract a set of possible reaction coordinates from each. In 
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sum, these steps were programmed to produce eight 2D movies per PD, with each 2D movie 

corresponding to one of the PD-manifold’s eigenvectors.  

 

Conformational analysis 

Upon completion, our task was to next classify the type of motions seen in each 2D movie per 

PD, noting that not all 2D movies extracted must correspond to valid conformational 

information; this is especially true of those obtained with smaller singular values. Our approach 

was to initiate a search to detect all PDs housing 2D movies with above-average visual 

appearance. In this search, many PD-manifolds were found to have extremely noisy or otherwise 

insensible information. This was a predictable scenario given the known deficiencies in the 

dataset4 (i.e., orientational bias leading to low occupancies in many PDs), and beyond 

remediation by ManifoldEM. As a result, only a subset of PDs where the images therein met the 

prerequisites for the manifold embedding approach could be analyzed. Of these above-threshold 

PDs, we found 216 PDs of the 1678 PDs (13%) with above average quality and 73 high-quality 

PDs (4%), as judged by visual inspection relative to the whole. Thus, overall, a relatively small 

percentage of the data as partitioned into these PDs met the prerequisite conditions for displaying 

the highest-quality conformational variation signals. 

 

We next organized all above-average PDs into 22 well-spaced groups on the 2-sphere, and 

selected several of the best PDs from each angular region. Detailed analysis was performed on 

the 64 PDs chosen, including classification of conformational motion type in each of the eight 

2D NLSA movies per PD. As shown in Supplementary Videos 2 and 3, we predominantly 

observed two conformational motions: (1) RBD-“down” to RBD-“up”; and (2) trimer-claw close 

to open, which we call conformational coordinate 1 (CC1) and conformational coordinate 2 

(CC2), respectively. However, PDs where a clear distinction existed between CC1 and CC2 were 

rare. Specifically, CC1 alone could only be clearly established in 31 of 64 PDs (48%); while both 

CC1 and CC2 were found occupying separate 2D movies in only 6 of 64 PDs (9%). In the 

remaining PDs, these conformational motions were not cleanly separated but were present in 

hybrid form. 
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This discrepancy arises from the nature of our analysis, where we define Euclidean distances 

between images that are 2D projections of the molecule. As a result, from a given viewing 

direction, a 3D motion projected onto 2D will appear more or less pronounced than it does in 

some other, depending on the type of motion and PD. For example, we found that the CC2 trimer 

claw motion was most pronounced only when observed from the “top-down view”, the PD 

aligned with the axis of the protein’s central alpha helices (PD 112).  

 

 

Transformation of structures along WE trajectory  

We next aimed to compare the conformational coordinates discovered by ManifoldEM from 

experimental cryo-EM ensembles with the WE motions observed in the spike-opening trajectory 

detailed in the main text. To this end, we converted the PDB files from the WE into a collection 

of 2D projections. We first selected 20 frames from the WE trajectory spanning conformations 

from the RBD-“down” to the RBD-“up” state. We next imported these files into Chimera54 along 

with a coarse 3D map obtained from ManifoldEM to be used for alignment reference. In order to 

place both frameworks in the same coordinate system for subsequent analysis, we translated and 

rotated the PDB files to coincide with the ManifoldEM map, using the Chimera fitmap 

command. Each PDB was then saved in Chimera. Next, these fitted PDBs were re-centered using 

Phenix55 pdbtools and converted into MRC-formatted Coulomb potential maps via EMAN256 

e2pdb2mrc.  For this last step, a resolution of 5 Å was chosen based on visual assessment of the 

EMAN2 outputs relative to those from ManifoldEM. Projections of these 20 MRCs were then 

taken using the standard projection operator in e2project3d with C1 symmetry in EMAN2. 

Importantly, the Euler coordinates for these projections were supplied by those representing the 

64 ManifoldEM anchors (after correcting for a coordinate transformation from ManifoldEM to 

ZXZ’ convention). Finally, these projections were combined into sequences for each PD to form 

64 20-frame 2D movies of the WE trajectory. 

 

1.2.4 Comparison of WE simulations to ManifoldEM outputs  

As shown in Supplementary Videos 2 and 3, and described in detail within our main text, a 

striking visual resemblance emerged between conformational motions obtained by WE 

simulation and experiment. For heightened visual aid, 2D movies from the WE simulation and 
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the ManifoldEM corresponding to the same PD (and RC therein) were next overlaid to directly 

highlight similarities and differences. For this procedure, we first layered the ManifoldEM movie 

over a homogenous red backdrop and applied a Linear Dodge blend mode, with a similar effect 

applied on the WE movie over a blue backdrop (see Supplemental Fig. 4 for the results of these 

operations). We next multiplied the ManifoldEM composite image and the WE composite image 

together. As an outcome of this multiplication, pixels that are white (signal) in both movies 

retain their whiteness in the composite. In this way, whiteness in the composite movie becomes a 

qualitative measure of similarity between conforming domains, while non-white regions 

emphasize differences.  

 

Finally, this overlaying approach was used to estimate the total extent of the RBD motion as 

expressed in the ManifoldEM and WE frameworks. For this comparison, CC1 from a side view 

(PD 1386) was chosen based on its highly prominent view of RBD-“up” to RBD-“down” 

motion. Next, the ManifoldEM movie was time-remapped to align it optimally in time with the 

motions observed in the corresponding WE movie (Supplementary Video 2). Using the 

multiplication-composite as a guide, it was determined that the ManifoldEM RBD domain 

reaches its full extent in the “up” position at the 14th frame out of the 20 frames from the WE 

trajectory, before the WE trajectory moves onward to a more fully open state. With this 

knowledge, the total difference in conformational extents was estimated at 11 Å as calculated via 

RBD — core distance. 

 

  

1.3 Experimental Methods 

 

Protein Expression and Purification  

Substitutions N343A, D405A, R408A, and D427A were cloned into the HexaPro SARS-CoV-2 

spike background.23 A spike variant with all RBDs locked in the “down” position through the 

introduction of a disulfide bond was similarly produced through cysteine substitutions at residues 

S383C and D985C in the HexaPro protein.25 All variants were expressed through 

polyethyleneimine-induced transient transfection of FreeStyle 293-F cells (Thermo Fisher). After 

4 days, cell supernatant was clarified by centrifugation, passed through a 0.22 µm filter, and 
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purified over StrepTactin resin (IBA). Variants were further purified by size-exclusion 

chromatography on a Superose 6 10/300 column (GE Healthcare) in a buffer consisting of 2 mM 

Tris pH 8.0, 200 mM NaCl and 0.02% NaN3. Soluble ACE2 was produced and purified as 

previously described.8 

 

Biolayer Interferometry  

Anti-foldon IgG was immobilized to an anti-human Fc (AHC) Octet biosensor (FortéBio). Tips 

were then submerged into the specified HexaPro variants before being subsequently dipped into 

200 nM ACE2 to observe variant association, followed by dissociation in buffer consisting of 20 

mM Tris pH 7.5, 150 mM NaCl, 1 mg/mL bovine serum albumin, and 0.01% Tween-20. The 

relative proportion of RBD in an accessible state was quantified based on the binding level as 

previously described.8 The S383C, D985C variant was used as a negative control. Data were 

collected in triplicate and replicate sensorgrams are shown in Supplemental Fig. 16. 



 15 

2. Supplementary Figures 

 

 
Supplemental Fig. 1 Schematic of the weighted ensemble (WE) strategy. The WE strategy is 

illustrated for a three-state system with a one-dimensional progress coordinate x that is divided 

into bins. U(x) represents the potential of the system dependent on x, which can be seen from the 

curve of the shaded region. 1. WE initiates two equally weighted trajectories (represented as 

circles) from the first bin, each with a statistical weight of 0.5 (represented as filled parts of the 

circles), for a fixed time interval 𝛕. 2. Resampling is then performed, replicating or terminating 

trajectories to maintain a target number of two trajectories in each bin (e.g., in the first and second 

bins, splitting the weight among the two child trajectories with a weight of 0.25 for each trajectory). 

3. Trajectories are run for another fixed time interval 𝛕. 4. After running, resampling is performed 

(e.g., in the first bin, terminating two of the three trajectories and in the second bin, replicating the 

one trajectory to yield two trajectories). 5. The system ends up with two trajectories in each of the 

visited bins. 6. One of the trajectories ends up in the third bin. Rounds of simulation and resampling 

are performed until a desired number of continuous pathways into the target state are generated.  
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Supplemental Fig. 2 Successful pathways of spike opening for the (A) actual and (B) intended 

progress coordinate. Overlay of 310 successful pathways including 204 pathways of the RBD 

transitioning from the “down” state to the “up” state (magenta-purple) and 106 pathways from the 

“down” to the “open” states (purple to cyan). Continuous trajectories plotted with the Cα RMSD 

of the RBD to the 6VSB “up” state versus the RBD — core distance. 
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Supplemental Fig. 3 Diversity of the simulated RBD “open” state ensemble. Probability 

distribution of RBD — core distances greater than the RBD “up” conformation defined by PDB 

6VSB (67.2 Å). The ACE2-bound structure from PDB 7A95 distance is 72.1 Å. 
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Supplemental Fig. 4 Comparison of two classes from the focused 3D classification in RELION 

with top and side views of the reconstructed classes. EM density maps are low pass filtered to 8 Å 

for display purposes. The class with the RBD “down” conformation is displayed with orange on 

the left, the class with the RBD “up” is displayed with cyan in the center, and the superposition of 

both maps is shown on the right side to highlight their differences. 



 19 

 
Supplemental Fig. 5 Comparison of a frame from the WE and ManifoldEM (MEM) trajectory as 

seen from a side view (PD 1386) and top-down view (PD 112). For this comparison, image 

compositing techniques are applied on the outputs of each method as shown in the columns, 

including Linear Dodge and Multiply. As an example of its utility, after performing this operation 

on RC2 from a top-down view (PD 112), it can be seen that a collection of white pixels emerged 

in the composite movie (bottom-right entry), which strongly emphasize the similarities in positions 

of RBD and spike core helices between frameworks. 
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Supplemental Fig. 6 Contribution of glycans shielding receptor binding motif along RBD opening 

pathway. Shielded area represents the difference between the solvent accessible surface area of the 

receptor binding motif in the presence and absence of (A) all three glycans, (B) N343, (C) N165, 

or (D) N234.  
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Supplemental Fig. 7 Distance between N343 glycan and RBD residues.  Scatter plot of data from 

the 310 continuous pathways with the minimum distance between the N343 glycan and RBD A 

residues F490, Y489, F456, or R457 plotted against RBD — core distance. Data points are colored 

based on % RBD solvent accessible surface area compared to the RBD “down” state 6VXX. 
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Supplemental Fig. 8 Distance between salt-bridge and hydrogen bonding residues along the spike 

opening pathway. Scatter plot of data from the 310 continuous pathways with the minimum 

distance between the residues shown in Figure 4 plotted against RBD-core distance. Data points 

are colored based on % RBD solvent accessible surface area compared to the RBD “down” state 

6VXX. 
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Supplemental Fig. 9 Initial equilibration of a “down”-state structure using a standard MD 

simulation. Time evolution of (A) Cα RMSD of protein residues , (B) Cα RMSD of structured 

region of RBD after alignment of core domain to the initial structure and (C) Distance between 

centers of mass of the RBD and core domain.  
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Supplemental Fig. 10 Scaling of the WESTPA software using NVIDIA V100 GPUs on the TACC 

Longhorn supercomputer vs. theoretical perfectly linear scaling. 
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Supplemental Fig. 11 Trajectory splitting tree of the 204 independent pathways that reached the 

“up” state. The number of each node indicates the number of pathways at the given WE iteration 

in parentheses. All trajectories shared the same parents until iteration 429, with the first splitting 

of trajectories occurring at iteration 430. Subsequent splitting occurred at later iterations. Note that 

the sum of the child pathways does not necessarily match up with the parent’s number of pathways 

due to splitting and merging with other trajectories (not shown).  
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Supplemental Fig. 12 Trajectory splitting tree of the 106 pathways that reached the “open” state. 

The number of each node indicates the number of pathways at the given WE iteration in 

parentheses. All trajectories shared the same parents until iteration 1643, the first splitting of 

trajectories occurring at iteration 1644. Note that the sum of the child pathways does not 

necessarily match up with the parent’s number of pathways at subsequent iterations due to splitting 

and merging with other trajectories (not shown).  
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Supplemental Fig. 13 Autocorrelation of arrivals from the “down” state to the “open” state (red) 

with a 95% confidence interval (blue). The confidence interval was generated using a Monte Carlo 

bootstrapping strategy where a bootstrap consisted of 1000 randomly drawn datasets (with 

replacement) from all “down”-to-“open” flux values. The vertical line marks the first point at 

which the autocorrelation falls within the confidence interval and is used to calculate the 

correlation time.  
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Supplemental Fig. 14 Probability distribution of transition times from the “down” state to the 

“up” state. The most probable transition time is marked in grey. Note that the first 25% of the 

“fast” transitions are discarded here to calculate the most probable transition time. 
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Supplemental Fig. 15 Probability distribution of transition times from the “down” state to the 

“open” state. The most probable transition time is marked in grey. Note that the first 25% of the 

“fast” transitions are discarded here to calculate the most probable transition time. 
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Supplemental Fig. 16 BLI sensorgrams of spike variants binding to ACE2 from duplicate (R2) 

and triplicate (R3) experiments.  
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3. Supplementary Tables 

 

Supplemental Table 1 Biolayer interferometry data of spike variants binding to ACE2. 
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4. Supplementary Videos 

Supplemental Video 1 Continuous pathway of RBD opening. This movie shows one of the 

continuous, unbiased pathways obtained from the WE simulations. All glycans are shown in blue 

except the N343 glycan which is colored magenta. Starting from all three RBDs in the “down” 

conformation, the chain A RBD lifts and twists counterclockwise into the “up” conformation, 

facilitated through interactions with the two adjacent RBDs, especially the N343 glycan gate on 

the chain B RBD. Upon reaching the “up” conformation, the RBD continues to twist into an “open” 

conformation en route to S1 dissociation.  

 

Supplemental Video 2 A comparison of the WE trajectory and ManifoldEM (MEM) CC1 and 

CC2 for a side view (PD 1386). It can be seen that there is strong agreement between the full WE 

trajectory and the sequential, piecewise combination of both CCs. Red arrows indicate direction 

of motion. 

 

Supplemental Video 3 A comparison of the WE trajectory and ManifoldEM (MEM) CC2 for a 

top-down view (PD 112). A strong agreement can be seen between the outputs of these two 

frameworks. To note, CC1 was not readily achievable from this view via manifold embedding, 

since the RBD-“down” to RBD-“up” trajectory from this view is orthogonal to the plane of the 

projection. Red arrows indicate direction of motion. 

 

Supplemental Video 4 Glycan gate at position N343 intercalates with residues to facilitate RBD 

opening. This movie zooms in closer to the glycan at position N343 to show how RBD opening is 

facilitated through intercalation between and underneath the residues F490, Y489, F456, F457 of 

RBD A. The glycan also transiently interacts with other residues of the RBD which are shown 

when they are within Å from the glycan.  

 

Supplemental Video 5 Mapping of residue contacts to RBD throughout opening pathway. 

Distances between residues throughout a continuous opening pathway calculated for the trajectory 

shown in Supplemental Videos 1 and 2. Distances to each residue from RBDA are shown for 

each chain in panels A-C and each of the glycans in panel D. Select regions are labeled, and N165, 

N234, and N343 are labeled with +, ++, +++, respectively.  



 33 

4. Supplementary References 

 

(31)  Huang, J.; MacKerell, A. D. CHARMM36 All-Atom Additive Protein Force Field: 

Validation Based on Comparison to NMR Data. J Comput Chem 2013, 34 (25), 2135–2145. 

https://doi.org/10.1002/jcc.23354. 

(32)  Guvench, O.; Hatcher, E. R.; Venable, R. M.; Pastor, R. W.; Mackerell, A. D. CHARMM 

Additive All-Atom Force Field for Glycosidic Linkages between Hexopyranoses. J Chem 

Theory Comput 2009, 5 (9), 2353–2370. https://doi.org/10.1021/ct900242e. 

(33)  Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. 

Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 

1983, 79 (2), 926–935. https://doi.org/10.1063/1.445869. 

(34)  Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J Mol Graph 

1996, 14 (1), 33–38, 27–28. 

(35)  Götz, A. W.; Williamson, M. J.; Xu, D.; Poole, D.; Le Grand, S.; Walker, R. C. Routine 

Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 1. Generalized 

Born. Journal of Chemical Theory and Computation 2012, 8 (5), 1542–1555. 

https://doi.org/10.1021/ct200909j. 

(36)  Salomon-Ferrer, R.; Götz, A. W.; Poole, D.; Le Grand, S.; Walker, R. C. Routine 

Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 2. Explicit Solvent 

Particle Mesh Ewald. Journal of Chemical Theory and Computation 2013, 9 (9), 3878–

3888. https://doi.org/10.1021/ct400314y. 

(37)  D.A. Case, I.Y. Ben-Shalom, S.R. Brozell, D.S. Cerutti, T.E. Cheatham, III, V.W.D. 

Cruzeiro, T.A. Darden,; R.E. Duke, D. Ghoreishi, M.K. Gilson, H. Gohlke, A.W. Goetz, D. 

Greene, R Harris, N. Homeyer, Y. Huang,; S. Izadi, A. Kovalenko, T. Kurtzman, T.S. Lee, 

S. LeGrand, P. Li, C. Lin, J. Liu, T. Luchko, R. Luo, D.J.; Mermelstein, K.M. Merz, Y. 

Miao, G. Monard, C. Nguyen, H. Nguyen, I. Omelyan, A. Onufriev, F. Pan, R.; Qi, D.R. 

Roe, A. Roitberg, C. Sagui, S. Schott-Verdugo, J. Shen, C.L. Simmerling, J. Smith, R. 

SalomonFerrer, J. Swails, R.C. Walker, J. Wang, H. Wei, R.M. Wolf, X. Wu, L. Xiao, 

D.M. York and P.A. Kollman. AMBER 2018. University of California, San Francisco. 

2018. 



 34 

(38)  Lee, T.-S.; Cerutti, D. S.; Mermelstein, D.; Lin, C.; LeGrand, S.; Giese, T. J.; Roitberg, A.; 

Case, D. A.; Walker, R. C.; York, D. M. GPU-Accelerated Molecular Dynamics and Free 

Energy Methods in Amber18: Performance Enhancements and New Features. J Chem Inf 

Model 2018, 58 (10), 2043–2050. https://doi.org/10.1021/acs.jcim.8b00462. 

(39)  Crowley, M. F.; Williamson, M. J.; Walker, R. C. CHAMBER: Comprehensive Support for 

CHARMM Force Fields within the AMBER Software. International Journal of Quantum 

Chemistry 2009, 109 (15), 3767–3772. https://doi.org/10.1002/qua.22372. 

(40)  Ryckaert, J.-P.; Ciccotti, G.; Berendsen, H. J. C. Numerical Integration of the Cartesian 

Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes. 

Journal of Computational Physics 1977, 23 (3), 327–341. https://doi.org/10.1016/0021-

9991(77)90098-5. 

(41)  Darden, T.; York, D.; Pedersen, L. Particle Mesh Ewald: An N⋅log(N) Method for Ewald 

Sums in Large Systems. J. Chem. Phys. 1993, 98 (12), 10089–10092. 

https://doi.org/10.1063/1.464397. 

(42)  Zwier, M. C.; Adelman, J. L.; Kaus, J. W.; Pratt, A. J.; Wong, K. F.; Rego, N. B.; Suárez, 

E.; Lettieri, S.; Wang, D. W.; Grabe, M.; Zuckerman, D. M.; Chong, L. T. WESTPA: An 

Interoperable, Highly Scalable Software Package for Weighted Ensemble Simulation and 

Analysis. J. Chem. Theory Comput. 2015, 11 (2), 800–809. 

https://doi.org/10.1021/ct5010615. 

(43)  Roe, D. R.; Cheatham, T. E. PTRAJ and CPPTRAJ: Software for Processing and Analysis 

of Molecular Dynamics Trajectory Data. J. Chem. Theory Comput. 2013, 9 (7), 3084–3095. 

https://doi.org/10.1021/ct400341p. 

(44)  Hunter, J. D. Matplotlib: A 2D Graphics Environment. Computing in Science Engineering 

2007, 9 (3), 90–95. https://doi.org/10.1109/MCSE.2007.55. 

(45)  R. J. Gowers, M. Linke, J. Barnoud, T. J. E. Reddy, M. N. Melo, S. L. Seyler, D. L. Dotson, 

J. Domanski, S. Buchoux, I. M. Kenney, and O. Beckstein.  MDAnalysis: A Python 

package for the rapid analysis of molecular dynamics simulations. In S. Benthall and S. 

Rostrup, editors, Proceedings of the 15th Python in Science Conference. 2016, 98-105. 

Austin, TX, SciPy, doi:10.25080/majora-629e541a-00e. 



 35 

(46)  N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein. MDAnalysis: A 

Toolkit for the Analysis of Molecular Dynamics Simulations. J. Comput. Chem. 2011, 32 

(10), 2319-2327. doi:10.1002/jcc.21787. 

(47)  Decherchi, S.; Spitaleri, A.; Stone, J.; Rocchia, W. NanoShaper-VMD Interface: 

Computing and Visualizing Surfaces, Pockets and Channels in Molecular Systems. 

Bioinformatics 2019, 35 (7), 1241–1243. https://doi.org/10.1093/bioinformatics/bty761. 

(48)  Dashti, A.; Mashayekhi, G.; Shekhar, M.; Ben Hail, D.; Salah, S.; Schwander, P.; des 

Georges, A.; Singharoy, A.; Frank, J.; Ourmazd, A. Retrieving Functional Pathways of 

Biomolecules from Single-Particle Snapshots. Nat. Commun. 2020, 11 (1), 1–14. 

https://doi.org/10.1038/s41467-020-18403-x. 

(49) Scheres, S. H. W. RELION: Implementation of a Bayesian Approach to Cryo-EM Structure 

Determination. J. Struct. Biol. 2012, 180 (3), 519–530. 

https://doi.org/10.1016/j.jsb.2012.09.006. 

(50)  Punjani, A.; Rubinstein, J. L.; Fleet, D. J.; Brubaker, M. A. CryoSPARC: Algorithms for 

Rapid Unsupervised Cryo-EM Structure Determination. Nat. Methods 2017, 14 (3), 290–

296. https://doi.org/10.1038/nmeth.4169. 

(51)  Punjani, A.; Fleet, D. J. 3D Variability Analysis: Resolving Continuous Flexibility and 

Discrete Heterogeneity from Single Particle Cryo-EM. J. Struct. Biol. 2021, 213 (2), 

107702. https://doi.org/10.1016/j.jsb.2021.107702. 

(52)  Coifman, R. R.; Lafon, S. Diffusion Maps. Appl. Comput. Harmon. Anal. 2006, 21 (1), 5–

30. https://doi.org/10.1016/j.acha.2006.04.006. 

(53)  Giannakis, D.; Majda, A. J. Nonlinear Laplacian Spectral Analysis for Time Series with 

Intermittency and Low-Frequency Variability. Proc. Natl. Acad. Sci. U. S. A. 2012, 109 (7), 

2222–2227. https://doi.org/10.1073/pnas.1118984109. 

(54) Huang, C.C., Couch, G.S., Pettersen, E.F., and Ferrin, T.E. "Chimera: An Extensible 

Molecular Modeling Application Constructed Using Standard Components." Pacific 

Symposium on Biocomputing 1:724 (1996). http://www.cgl.ucsf.edu/chimera 

(55)  Liebschner, D.; Afonine, P. V.; Baker, M. L.; Bunkoczi, G.; Chen, V. B.; Croll, T. I.; 

Hintze, B.; Hung, L. W.; Jain, S.; McCoy, A. J.; Moriarty, N. W.; Oeffner, R. D.; Poon, B. 

K.; Prisant, M. G.; Read, R. J.; Richardson, J. S.; Richardson, D. C.; Sammito, M. D.; 

Sobolev, O. V.; Stockwell, D. H.; Terwilliger, T. C.; Urzhumtsev, A. G.; Videau, L. L.; 



 36 

Williams, C. J.; Adams, P. D. Macromolecular Structure Determination Using X-Rays, 

Neutrons and Electrons: Recent Developments in Phenix. Acta Crystallogr. Sect. D Struct. 

Biol. 2019, 75 (Pt 10), 861–877. https://doi.org/10.1107/S2059798319011471. 

(56)  Tang, G.; Peng, L.; Baldwin, P. R.; Mann, D. S.; Jiang, W.; Rees, I.; Ludtke, S. J. EMAN2: 

An Extensible Image Processing Suite for Electron Microscopy. J. Struct. Biol. 2007, 157 

(1), 38–46. https://doi.org/10.1016/j.jsb.2006.05.009. 

 


