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Purpose of review

This review summarizes epidemiological data linking the fatty acid desaturation index

measured in blood lipids, as a biomarker of hepatic stearoyl-CoA desaturase activity, the

key enzyme involved in the synthesis of monounsaturated fatty acids from saturated fatty

acids, to breast cancer risk. The biological plausibility of this association is discussed.

Recent findings

Epidemiological cohort studies reported an association between a high saturated to

monounsaturated fatty acid ratio measured in blood lipids, indicating low stearoyl-CoA

desaturase-1 activity, and decreased breast cancer risk. The suppression of stearoyl-

CoA desaturase expression reduces cancer cell proliferation and in-vitro invasiveness,

and dramatically impairs tumor formation and growth. These effects could not be

overcome by supplying exogenous monounsaturated fatty acids.

Summary

Epidemiological findings, in accordance with experimental data, suggested that

decreased hepatic stearoyl-CoA desaturase expression/activity may be related to

decreased risk of breast cancer.
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Introduction

The role of fat intake in cancer etiology still remains

controversial. Epidemiological studies are limited by the

assessment of dietary fat through food-frequency ques-

tionnaires, methods shown to be prone to measurement

error [1]. Moreover, the conversion of food items into

their fatty acid content is complex for numerous reasons,

related to the high variation of fatty acid content within

the same food according to added fat, cooking methods

and industry supply. In this context, dietary measure-

ment error could have masked true associations between

dietary fatty acids and cancer risk [2]. In contrast, bio-

markers of dietary fatty acids (i.e., serum, plasma, eryth-

rocyte membrane, adipose tissue fatty acid composition)

offer objective, qualitative measures of bioavailable

amounts of these nutrients irrespective of the source

and quality of food, particularly for fatty acids that are

not endogenously synthesized, such as essential fatty

acids, n� 3 long-chain polyunsaturated fatty acids

(PUFAs) and some trans fatty acids [3–6].

In general, saturated fatty acids (SFAs) and monounsa-

turated fatty acids (MUFAs) in blood lipid fractions or
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tissues are somewhat weaker biomarkers than PUFAs or

trans fatty acids of their respective dietary intakes [5].

Serum, plasma or erythrocyte membrane MUFA and

SFA levels reflect endogenous de-novo fatty acid syn-

thesis. One key regulator of SFA and MUFA composition

is stearoyl-CoA desaturase (SCD), the endoplasmic reti-

culum-resident enzyme that catalyzes the introduction of

the first double bond in the cis-D9 position of several

saturated fatty acyl-CoAs, principally palmitoyl-CoA and

stearoyl-CoA, to form palmitoleyl-CoA and oleyl-CoA

[7,8]. Two isoforms of SCD (SCD-1 and SCD-5) have

been described for humans, both exhibiting approxi-

mately 85% homology with murine SCD-1 [9,10]. The

expression of SCD-1 is high in brain, liver, heart, and lung

[10], whereas SCD-5 is almost exclusively expressed in

fetal brain [9].

In some epidemiological studies on the relationship

between biomarkers of dietary fat and cancer risk, the

ratio of MUFAs to SFAs, product to substrate ratio also

called the desaturation index (or the SFAs to MUFAs

ratio, substrate to product ratio called the saturation

index) determined in blood lipid fractions, has been used

as a reflect of SDC-1 activity [11]. Thus, the use of
rized reproduction of this article is prohibited.
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biomarkers of fatty acids is a meaningful approach to

investigate the relationship between SCD-1 and cancer

risk.
The fatty acid desaturation index in blood
lipids as a surrogate marker of hepatic
stearoyl-CoA desaturase 1 activity/
expression
Endogenously synthesized SFAs and MUFAs measured

in blood lipid fractions or tissues are weak biomarkers of

their respective dietary intakes. For example, results

from a cross-sectional study within the European Pro-

spective Investigation into Cancer and Nutrition (EPIC)

cohort showed weak individual correlations between

plasma phospholipid oleic acid (18 : 1 n� 9) and olive

oil or meat intake, the main dietary sources of oleic acid in

southern and northern-central Europe, respectively [12],

suggesting that dietary contributors of plasma oleic acid

concentration may not be strong determinants compared

with its endogenous hepatic synthesis from saturated

stearic acid [5].

In some human studies, the surrogate marker used for

SCD-1 activity is the ratio of the product and precursor

for the mammalian microsomal enzyme SCD-1 enzy-

matic step, either the ratio between 16 : 1 n� 7 and

16 : 0 (desaturation index n� 7) or the ratio between

18 : 1 n� 9 and 18 : 0 (desaturation index n� 9) in plasma

samples. The validity of the use of the desaturation index

measured in blood lipids or tissues as an in-vivo surrogate

of SCD-1 activity has been demonstrated in two studies.

In a study involving 75 subjects representative of a study

population of 294 healthy men, adipose tissue fatty acid

desaturation indexes n� 7 and n� 9 reflected the expres-

sion of the gene encoding SCD-1 in this tissue [13]. A

cross-sectional study conducted in a population-based

study of 301 healthy men reported some strong corre-

lations between desaturation indexes measured in blood

lipid fractions and adipose tissue, and suggested that the

desaturation index (particularly 16 : 1 n� 7 to 16 : 0 ratio)

in blood-free fatty acids reflect the SCD-1 activity in

adipose tissue, whereas the desaturation index obtained

from serum triacylglycerols and phospholipids mainly

reflect hepatic SCD-1 activity [14]. These data suggest

that the fatty acid desaturation index measured in serum

or plasma phospholipids can accurately reflect hepatic

SCD-1 activity/expression.
The fatty acid desaturation index (or
saturation index) and breast cancer risk: data
from epidemiological studies
Some epidemiological studies addressed the hypothesis

that low SCD-1 activity is associated with decreased

breast cancer risk through the use of the fatty acid
opyright © Lippincott Williams & Wilkins. Unauth
saturation index (substrate to product ratio) measured

in blood lipid fraction or membrane erythrocytes. Thus,

the ratios of 16 : 0 to 16 : 1 n� 7 and 18 : 0 to 18 : 1 n� 9

correspond to saturation indices n� 7 and n� 9, respect-

ively. In an Italian cohort study, a high saturation index

n� 9 (indicating low SCD-1 activity) measured in eryth-

rocytes was associated with decreased risk of breast

cancer in postmenopausal women [15]. Similarly, in a

Swedish cohort study, a high saturation index n� 9

measured prediagnostically in serum phospholipids was

associated with decreased risk of breast cancer [16]. In

a French cohort study, a high saturation index n� 7

measured in serum phospholipids was associated with

decreased risk of breast cancer [17]. Finally, in a case-

control study conducted in China, a high saturation index

n� 7 measured in erythrocyte membrane was associated

with decreased risk of breast cancer [18]. These data

suggested that low SCD-1 activity estimated through

SFAs and MUFAs ratios measured in blood or erythro-

cyte membrane phospholipids was related to decreased

breast cancer risk. The potential pathway underlying

the association between prediagnostic plasma SFAs

and MUFAs ratio to risk of breast cancer is not known.
Effect of dietary and hormonal factors on the
fatty acid desaturation index
Data on how the fatty acid desaturation index is affected

by diet, hormones or lifestyle factors are few (summarized

in Fig. 1). First of all, short-term fasting has been shown

to decrease the expression of the SCD-1 gene in murine

liver [19]. Similarly, dietary energy restriction, which

reduces spontaneous mammary tumors in rodents irre-

spective of the type of nutrient restricted, led to

decreased expression of SCD-1 in breast tissues in over-

weight or obese women [20]. Surprisingly, a study

reported data indicating that both chronic food restriction

and chronic food restriction/refeeding cause an increased

expression of SCD-1 in white adipose tissue and liver in

rats [21]. These results suggest that short-term fasting

and chronic food restriction exert the opposite effect on

hepatic SCD-1 expression.

Regarding the effect of dietary fatty acids on SCD-1

expression, a controlled crossover study conducted in

20 subjects showed that a high-dietary intake of SFAs

led to increased hepatic SCD-1 activity, principally

reflected by the 16 : 1 n� 7 to 16 : 0 ratio in serum cho-

lesterol esters and phospholipids [22]. This is in line with

data from an experimental study in mice, where it was

suggested that a high-SFA intake was needed to upre-

gulate SCD [23]. Another possibility is that a diet rich in

SFAs might counteract the well-known inhibitory effect

of a diet rich in PUFAs on the expression of SCD-1 [24].

Thus, the desaturation index n� 7 in blood lipid fractions

could be mainly affected by dietary SFAs, at least in
orized reproduction of this article is prohibited.
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Figure 1 Regulation of stearoyl-CoA desaturase 1
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populations with high-fat diets. As a consequence, a high

desaturation index n� 7 in serum phospholipids or tis-

sues associated with increased breast cancer risk may be,

at least in part, the result of a diet rich in SFA. In a study

conducted in 162 healthy individuals aimed to compare

the effects on insulin sensitivity of a diet rich in SFAs to a

diet rich in MUFAs, the proportion of 18 : 1 n� 9 was

increased whereas the proportion of 16 : 1 n� 7 was

decreased on the high-MUFA diet [25]. These data could

suggest that the desaturation index n� 7 could be under-

estimated whereas the desaturation index n� 9 overes-

timated on a high-MUFA diet, because a high content of

oleic acid in the diet will dilute the signal from newly

endogenously synthesized 18 : 1 n� 9. In a situation in

which the fat intake would be low, the best marker of

SCD-1 activity might be the desaturation index n� 9,

because the preferred substrate for SCD is 18 : 0.

Besides fatty acids, SCD-1 activity is also activated by

high-carbohydrate diets, especially those enriched in

rapidly absorbed refined carbohydrates such as glucose

and fructose [26]. Interestingly, some studies found that

chronic ethanol feeding, a known risk factor for breast

cancer risk, is associated with increased hepatic expres-

sion of SCD-1 in animal models [27–29].

Insulin is a well-documented upregulator of SCD-1

activity [30], suggesting that increased desaturation index

associated with increased breast cancer risk might reflect

an underlying metabolic profile characterized by chronic
opyright © Lippincott Williams & Wilkins. Unautho
hyperinsulinemia. SCD-1 activity might also be affected

by estrogens. In high-fat-diet fed mice, 17b-estradiol

treatment led to decreased expression of SCD-1 in adi-

pose tissue and liver [31].

Finally, exercise training, a known protective factor for

breast cancer risk, has been reported to downregulate

hepatic SCD-1 gene expression and protein content in

high-fat fed rats [32].
Biological plausibility: relevance of
epidemiological data with regard to
experimental data
SCD-1 is of particular interest as an increased activity of

this lipogenic enzyme has been suggested to play a role in

the development of fatty liver [33,34], insulin resistance

[35], obesity [7,36] and cancer [15–18]. Increased cellular

SCD-1 activity has been suggested to influence fatty acid

partitioning by promoting MUFA synthesis but decreas-

ing oxidation [23]. It is known that MUFAs can serve as

mediators of signal transduction and cellular differen-

tiation, and unbalanced levels of these mediators have

been also implicated in carcinogenesis [37].

The degree of fatty acid unsaturation in membrane

phospholipids determines the biophysical properties of

the membrane, which, in turn, influences many crucial

membrane-associated functions. The fatty acid compo-

sition of membrane phospholipids is likely to be affected
rized reproduction of this article is prohibited.
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by the exogenous fatty acids and by altered activities of

lipid-metabolizing enzymes. Despite the overactivation

of enzymes that synthesize SFAs (e.g., acetyl-CoA

carboxylase-alpha, fatty acid synthase) [38], abundant

amounts of MUFAs, mainly oleic acid, are found in

cancer cells [39,40]. In-vitro studies have provided new

suggestion of a causal relationship between MUFA syn-

thesis and several biological features of the cancer pheno-

type. The expression of SCD-1 is increased in several

human cancers, chemically induced tumors, as well as in

oncogene-transformed cells [39,41,42]. Additionally, the

suppression of SCD-1 expression reduces cancer cell

proliferation and in-vitro invasiveness, and dramatically

impairs tumor formation and growth [43–46]. In addition,

active SCD-1 may be required for neoplastic cells to

survive a lipotoxic stress because SCD-1 knockdown

increases basal apoptosis and sensitizes cancer cells to

the cytotoxic effects of excess SFAs [45]. SCD-1 has also

been identified from a siRNA library as a gene whose

suppression impairs human cancer cell survival, further

supporting a functional link between SCD-1 and cancer

cell growth [46]. Further data showed that the pharma-

cological inhibition of SCD-1 in cancer cells inactivates

acetyl-CoA carboxylase activity via the activation of

AMP-activated kinase, leading to decreased cell prolifer-

ation [43]. In a model of stable knockdown of SCD-1

gene expression in human lung adenocarcinoma cells, a

decreased MUFAs to SFAs ratio was found in tumor cell

lipids, as well as decreased cell proliferation and ancho-

rage-independent growth, whereas the rate of apoptosis

was increased [44]. Moreover, Akt signaling, commonly

deregulated in cancer, was found impaired in SCD-1-

ablated tumor cells.

In this latter study [44], one of the most decisive findings

was the original demonstration that increased SCD-1

expression/activity is crucial for cell growth, whereas

exogenous dietary MUFAs were not. Indeed, the effects

of SCD-1 blockade on human lung cancer cell growth and

apoptosis in nude mice could not be overcome by sup-

plying abundant MUFAs (i.e., oleic acid) in the diet,

suggesting that SCD-1 is a key factor in the regulation of

carcinogenesis in vivo [44]. The reason for the divergent

effects of endogenous and exogenous oleic acid on cell

metabolism and cell growth is not known. It has been

hypothesized that exogenous and endogenous MUFAs

enter separated metabolic compartments and may display

different intracellular regulatory roles [47]. Although this

hypothesis still needs confirmation, it could be a valuable

argument explaining the divergent data regarding the

association between exogenous and endogenous MUFAs

and breast cancer risk; on the one hand, as described

above, a high MUFA-to-SFA ratio measured in blood

lipids has been consistently associated with increased risk

of breast cancer, on the other hand, a high estimated

dietary intake of MUFAs (mainly oleic acid) or olive oil
opyright © Lippincott Williams & Wilkins. Unauth
rich in oleic acid has generally shown a negative associ-

ation with breast cancer risk, at least in Mediterranean

countries [48,49].
Conclusion
The association between SFAs and MUFAs ratio

measured in blood lipid fractions, as an index of hepatic

SCD-1 activity/expression, and breast cancer risk has

been reported in numerous epidemiological cohort stu-

dies. Additionally, there is evidence that crucial features

of tumor formation, both in cultured cancer cells and in

tumor xenografts, are determined by the level of SCD-1

expression. Together, this appears to favor endogenously

synthesized MUFAs, rather than exogenous MUFAs, as

regulators of cancer cell growth. Decreased hepatic SCD-

1 expression/activity may be related to decreased risk of

breast cancer. Because SCD-1 expression is regulated by

dietary and lifestyle factors, new nutritional strategies for

cancer prevention could be based on targeting SCD-

1 function.
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