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Increasing evidence suggests that stearoyl-CoA desaturase (SCD), the rate-limiting enzyme of mono-
unsaturated fatty acid biosynthesis, is an important factor in the pathogenesis of lipid-induced insulin
resistance. Mice with a targeted disruption of the SCD1 gene have improved glucose tolerance compared to
wild-type mice, despite lower fasting plasma insulin levels. Increased SCD activity has been found in insulin-
resistant humans and animals, whereas SCD1 deficiency attenuates both diet- and genetically-induced
impairment of insulin action. Phosphorylation of serine and threonine residues on insulin receptor, insulin
receptor substrates (IRS1 and IRS2), and on Akt has been shown to be the major step in insulin signaling that
is altered due to the lack of SCD1. In this review we discuss perturbations in cell signaling and lipid
metabolism cascades in insulin-sensitive tissues due to SCD1 deficiency. In particular, we address the role of
cellular signaling molecules including free fatty acids, ceramides, fatty acyl-CoAs, AMP-activated protein
kinase, protein tyrosine phosphatase 1B as well as of membrane fluidity. While the precise mechanism of
SCD action on insulin signaling remains to be clarified, current findings on SCD point to a very promising
novel target for the treatment of insulin resistance.
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Rapid adaptation to a modernized lifestyle, characterized by
reduced physical activity and increased consumption of highly
palatable, energy-dense and low-cost food, has resulted in a dramatic
rise in the incidence of overweight and obesity world-wide. Obesity
increases the risk of numerous conditions that shorten the lifetime,
including type 2 diabetes, glucose intolerance, dyslipidaemia, hyper-
tension and cardiovascular disease, collectively known as the meta-
bolic syndrome [1]. Insulin resistance, an impaired biological response
to circulating insulin, is a disorder common to most of the obesity-
related diseases and, as such, represents an important target of medi-
cal research.

Significant efforts are now being made to characterize the molec-
ular mechanism of insulin resistance that could possibly lead to an
effective treatment and prevention of this condition. The precise
etiology of impaired insulin action in obese people is still unknown;
however, an increasing body of evidence indicates that it may be
associated with alterations in intracellular lipid metabolism [2,3].
Insulin-resistant humans and animals accumulate significant amounts
of lipids not only in the adipose tissue, but also in liver, muscle and
other peripheral tissues. Storage of even a modest caloric surplus in
lean, insulin-sensitive tissues leads to insulin resistance [2,4]. Altered
lipid metabolism as seen in the insulin-resistant states largely
depends on the aberrant expression of genes encoding key metabolic
enzymes. Consequently, several enzymes regulating lipid metabolism
have been recently proposed as therapeutic targets (reviewed in [5]).
One of these enzymes, stearoyl-CoA desaturase (SCD), appears to be
of special significance, because SCD1 is the major gene target of leptin,
which is the central mediator regulating energy homeostasis and a
known insulin-sensitizer [6]. Herein we summarize recent findings
on SCD and discuss possible mechanisms by which SCD1 may affect
insulin signaling.

1. Lipids and insulin resistance

A primary role for elevated free fatty acid (FFA) availability in
the development of muscle insulin resistance was first suggested
by Randle et al. [7] based on the observation that a high plasma
concentration of FFA is commonly associated with diabetes and
other disorders of carbohydrate metabolism. Intramuscular lipid
accumulation is now evident in a wide array of experimental models,
including insulin resistance induced acutely by lipid infusion in both
humans and rodents [8]. Animals representing genetic forms of
obesity such as the Zucker rats [9] as well as dietary models of insulin
resistance including chronically glucose-infused rats [4] and high-fat-
fed rats also exhibit increased lipid accumulation [10]. Transgenic
mice that lack the white adipose tissue are severely insulin resistant
and demonstrate a twofold increase in muscle triglyceride content
[11]. Moreover, in humanswith various lipodystrophies, including the
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increasingly frequent HIV lipodystrophy syndrome, depletion of pe-
ripheral fat mass is associated with increased intramyocellular lipid
content and insulin resistance [12].

Further support for the primary role of increased lipid content in
the development of muscle insulin resistance is provided by the fact
that lowering lipid availability is associated with an improvement in
insulin action. For example, dietary lipid-induced muscle insulin re-
sistance in rodents is relatively easily reversed by manipulations that
lessen cytosolic lipid accumulation (e.g. diet change, exercise or
fasting) [13]. Peroxisome proliferator-activated receptor (PPAR)
agonists also lower muscle FA-CoA and enhance insulin sensitivity
[14]. Activation of the AMP-activated protein kinase (AMPK) by AICAR
leads to enhancement of muscle insulin sensitivity, though the
involvement of altered lipid metabolism is less clear-cut especially
in the case of glycolytic muscle [15]. In humans, reduction of plasma
FFA levels by treatment of subjects with an inhibitor of lipolysis
(acipimox) for 1 week improves insulin action, and this beneficial
effect is lost if the reduction in plasma FFA is prevented by intralipid
infusion [16].Weight loss has been shown to improvewhole body and
skeletal muscle insulin action in obese patients and compliance to a
low-fat diet confers sustained improvements in insulin action after
5 years [17]. A reduction in lipid availability and accumulation within
the skeletal muscle is thought to be central to the insulin-sensitizing
effects of the thiazolidinedione class of antidiabetic agents [18]. These
drugs, which include troglitazone, pioglitazone and rosiglitazone,
are potent and selective ligands of the transcription factor PPARγ.
Agonists of PPARα, such as the fibrates and WY 14643, are potent
hypolipidaemic agents and recent studies indicate that PPARα
agonists can also improve insulin sensitivity in association with a
decrease in muscle lipids [19].

Reduction in intramuscular lipids may also be the mechanism by
which the adipose secreted proteins, leptin and adiponectin, improve
insulin sensitivity [13]. In contrast to other ‘adipokines’ such as TNFα
and resistin, which are proposed to have detrimental effects on insulin
action, leptin and adiponectin enhance insulin action, and this effect is
at least partly independent of their impact on food intake and
adiposity [20]. A direct action of these hormones on peripheral tissues
to stimulate fatty acid oxidation and depletion of the intracellular lipid
stores is thought to contribute to their insulin-sensitizing effects.
Activation of AMPK may play a role in this mechanism [21]. However,
as reported for the cardiac muscle, adiponectin and leptin may act on
fat oxidation also independently of AMPK, e.g. by stimulating expres-
sion of genes of β-oxidation [22].

A number of hypotheses have been put forward to explain the
mechanism by which increased lipid availability induces muscle
insulin resistance. One of the proposed possibilities is that excess
lipids, particularly lipids that are deposited in insulin-sensitive cell
types other than adipocytes, can inhibit insulin signaling. The precise
identity of the lipid factor responsible is not known, although FFA,
fatty acyl-CoA (FA-CoA), diacylglycerol and ceramide are likely
candidates. By activating protein kinase C, the lipid molecules seem
to reduce the activity of insulin receptor substrate 1 (IRS-1), a key
component of the insulin signaling pathway [2,4]. Thus, regulators of
tissue specific metabolic pathways that reduce fat accumulation
in non-adipose sites are attractive candidates for novel therapeutic
strategies in the treatment of insulin resistance, but are still mostly
unexplored.

2. Role of stearoyl-CoA desaturase in lipid metabolism regulation

Stearoyl-CoA desaturase (SCD) is the rate-limiting enzyme cata-
lyzing the synthesis of monounsaturated fatty acids, mainly oleate
and palmitoleate, which are used as substrates for the synthesis of
triglycerides, wax esters, cholesterol esters, and phospholipids [23].
Four isoforms of SCD have been identified in the mouse (SCD1-4)
[24–27] and two (SCD1 and -5) in the human genome [28,29].
Human SCD1 shows 85% homology to murine SCD1 [28]. In an adult
mouse, SCD1 isoform is expressed in lipogenic tissues including
liver and adipose tissue. SCD2 is ubiquitously expressed in most
tissues except liver, where it is only expressed at early stages of life
(embryos and neonatals), and then, at the weaning age, is replaced
by SCD1 [30]. SCD3 expression is restricted to the sebocytes in skin,
harderian gland, and preputial gland [31], whereas SCD4 is expressed
exclusively in the heart [27]. The physiological role of each SCD
isoform and the reason for having multiple SCD gene isoforms that
share considerable sequence homology and catalyze the same
biochemical reaction are currently under investigation.

Studies on mouse strains that have a mutation in the SCD1 gene
provided evidence that SCD1 is an important control point in lipid
metabolism and bodyweight regulation [32–34]. Mice with a targeted
disruption in the SCD1 gene have increased energy expenditure,
reduced body adiposity, increased insulin sensitivity and are resistant
to diet-induced obesity [23,33,35]. SCD1 was found to be specifically
repressed during leptin-mediated weight loss, and leptin-deficient
ob/ob mice lacking SCD1 showed markedly reduced adiposity, despite
higher food intake [6]. In addition, SCD1 deficiency completely corrects
the hypometabolic phenotype and hepatic steatosis of the ob/ob mice
[6] and the low density lipoprotein receptor-deficient mice [36]. Lack of
SCD1 function attenuates also fasting-induced liver steatosis in PPARα
deficient mice [37]. Interestingly, liver-specific SCD1 knockout mice are
protected from high-carbohydrate, but not from high-fat-diet-induced
adiposity and liver steatosis [38]. The most recent study of skin-specific
SCD1 knockout mice indicated the presence of a specific cross-talk
between the skin and peripheral tissues in maintaining energy homeo-
stasis [39]. While skin-specific SCD1 knockout mice display marked
sebaceous glandhypoplasia and depletion of sebaceous lipids, they have
significantly increased energy expenditure and are protected fromhigh-
fat-diet-induced obesity [39].

Much evidence indicates that the direct anti-steatotic effect of
SCD1 deficiency stems from increased fatty acid oxidation, reduced
lipid synthesis and increased thermogenesis [39–42]. The molecular
mechanism of this effect is not completely understood. However,
our study established that one likely mechanism is via increased
activation of the AMPK pathway [40]. The anti-steatotic impact of
SCD1 deficiency also involves transcriptional effects. We have shown
that loss of SCD1 function down-regulates sterol regulatory element
binding protein-1c, a lipogenic transcription factor, thereby reducing
the expression of lipogenic enzymes such as fatty acid synthase,
acetyl-CoA carboxylase, or glycerol-3-phosphate acyltransferase in
liver [42,43]. SCD1 deficiency also up-regulates the expression of
genes involved in fatty acid β-oxidation [44]. The mechanisms by
which SCD1 deficiency leads to down-regulation of expression of
genes of fatty acid synthesis and activation of genes of fatty acid
oxidation are presently unknown.

3. Stearoyl-CoA desaturase and insulin signaling

Dysregulation of fatty acid and lipid metabolism influences insulin
signaling at various levels, leading to impaired glucose tolerance,
decreased fatty acid oxidation and glycogen synthesis, and finally
resulting in insulin resistance. Given a significant role of SCD in the
regulation of lipidmetabolism and fat accumulation, we hypothesized
that SCD might be an important factor in maintenance of insulin
sensitivity.

Indeed, the whole-body glucose tolerance is much greater in
SCD1−/− mice than in control animals [35]. Fasting insulin levels
are lower in SCD1−/− mice on a chow diet compared with wild-
type mice. On a high-fat diet, insulin levels are similar between the
two groups. However, after a 30-min glucose load, both male and
female SCD1−/−mice tend to have lower plasma glucose levels and
show improved glucose tolerance compared with wild-type mice
[35]. In addition, the glucose-lowering effect of insulin is greater in
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the SCD1−/− than in wild-typemice as demonstrated by the insulin
tolerance test. However, when the SCD1 mutation was introduced in
micewith lipodystrophy or in leptin-deficient BTBRmice, themutant
mice had reduced insulin levels coupled with increased glucose
levels, suggesting that there might be a β-cell failure. The reason
for the reduced insulin levels and a possible β-cell failure is still
being investigated. One possible explanation is accumulation
of lipids and down-regulation of fatty acid oxidation in pancreatic
β-cells [45,46].

Results from studies performed in liver-specific SCD1-knockout
mice indicated an important role of hepatic SCD1 in carbohydrate
induced adiposity and lipogenesis [38]. Liver-specific SCD1 deficiency
caused a severe impairment of gluconeogenesis, resulting in hypo-
glycemia and depletion of lipogenic carbohydrate metabolites such
as glucose-6-phosphate and xylulose-5-phosphate [38]. Guttierez-
Juarez et al. [47] showed that a decrease in hepatic SCD1 activity can
improve insulin action and can prevent diet-induced insulin resis-
tance in rats and mice. A 5-day treatment with a sequence-specific
antisense oligodeoxynucleotide (ASO) decreased liver SCD1 expres-
sion (by 80%) and total SCD activity (by 50%) in rats and mice, which
completely reversed the severe hepatic insulin resistance caused by a
high-fat diet. The treatment with ASO also decreased glucose pro-
duction, gluconeogenesis, and glycogenolysis. Down-regulation of
SCD1 also led to increased Akt phosphorylation andmarked decreases
in the expression of glucose-6-phosphatase and phosphoenolopyr-
uvate carboxykinase. Protein tyrosine phosphatase 1B (PTP-1B)
expression was modestly decreased in response to SCD1 deficiency,
accounting in part for the increased phosphorylation of IRS1 [47].
Also, angiotensin II type 1 blocker ameliorates hepatic steatosis and
insulin signaling in obese fa/fa Zucker rats due to suppression of SCD1
Fig. 1. The effect of SCD1 deficiency on insulin signaling — proposed mechanism. In the abse
and the rate of β-oxidation are significantly increasedwhich, together with reduced lipogene
reduction of the lipid content disinhibits Akt and IRSs. Also, the expression and activity of P
These phenomena, together with the consequent activation of Akt kinase lead to increased G
FA-CoA— fatty acyl-CoA; PTP-1B— protein tyrosine phosphatase 1B; IR— insulin receptor; IR
protein kinase; ACC — acetyl-CoA carboxylase; PI3K — phosphoinositide 3-kinase; CPT1 —
gene expression [48]. All these data support the hypothesis that SCD1
expression and activity are required for the onset of diet-induced
hepatic insulin resistance.

A connection between SCD1 and insulin signaling was also ob-
served inmuscle of the insulin receptor (IR) knockoutmice, where the
lack of insulin action present in these animals resulted in down-
regulation of SCD1, as well as in up-regulation of some signaling-
related genes, such as Akt2, and of the fatty acid transporter CD36
[49]. Reversely, Voss et al. [50] showed that stable overexpression of
SCD1 in muscle cells decreases tyrosine phosphorylation of IRS1 and
serine 473 phosphorylation of Akt1/protein kinase B and is sufficient
to impair glucose uptake and insulin signaling. Moreover, insulin-
resistant skeletal muscle of ZDF rats is characterized by a specific gene
expression profile with increased levels of SCD1 [50]. These observa-
tions support the hypothesis that elevated SCD1 expression in muscle
is a possible cause of insulin resistance. In line with the above, studies
on genetic polymorphism of human SCD showed that inherent
variations in the SCD1 gene are associated with body fat distribution
and insulin sensitivity [51]. Polymorphisms located in this gene
cluster were genotyped in 1143 elderly Swedish men. Subjects homo-
zygous for the rare alleles of rs10883463, rs7849, rs2167444, and
rs508384 had decreased BMI and improved insulin sensitivity. The
allele of rs7849 demonstrated the strongest effect on both insulin
sensitivity and waist circumference, corresponding to 23% higher
insulin sensitivity and 4 cm less waist circumference [51]. Moreover,
recent studies on primary human myotubes of 39 metabolically
characterized individuals showed that palmitate-induced inflamma-
tion, ER stress, and insulin resistance are positively correlated with
myocellular SCD1 expression [52]. SCD1 was also shown to be a major
gene affected by pioglitazone treatment in humans [53]. These clinical
nce of SCD1, the expression of fatty acid oxidation genes, the activity of AMPK pathway
sis, lead to a decrease in the intracellular accumulation of FFA, FA-CoA and ceramide. The
TP-1B are decreased leading to an increase in phosphorylation of IR and IRS-1 and -2.
LUT4 membrane translocation and enhanced glucose transport. FFA — free fatty acids;
S— insulin receptor substrate; GLUT4— glucose transporter 4; AMPK— AMP-activated

carnitine palmitoyltransferase 1.
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trials additionally confirm the important role of SCD in regulation of
insulin sensitivity.

4. How does loss of SCD1 function protect against insulin
resistance?

The mechanism by which SCD1 affects insulin signaling is not
completely understood. However, numerous studies established that
the basal tyrosine phosphorylation of IR and of insulin receptor
substrates (IRS1 and IRS2), the association of both IRS1 and IRS2 with
the αp85 subunit of phosphatidyl-inositol 3-kinase, the phosphory-
lation of Akt and GLUT4 membrane translocation are all elevated
in skeletal muscle and in the brown adipose tissue of SCD1−/−
compared to wild-type mice [35,54].

There are several possible mechanisms that may account for
increased insulin signaling in SCD1−/− mice despite lower level of
plasma insulin. One possibility that is consistent with current results
is that SCD1 deficiency leads to a decrease in the intramuscular levels
of FFA, FA-CoA and ceramides (Fig. 1) [41]. Accumulation of these
molecules may result in reduced IRS1 phosphorylation and Akt
activity, and finally lead to impaired GLUT4 translocation to the
plasma membrane, while reduction in FFA, ceramide and FA-CoA
contents was shown to have an opposite effect [2,4]. Decrease in
ceramide biosynthesis due to SCD1 deficiency was shown to be a
consequence of 50% reduction in expression of SPT, a rate-limiting
enzyme of de novo ceramide synthesis, in muscle of both wild-type
and ob/ob mice [41]. In addition, SCD1 deficiency entails an increase
in the rate of β-oxidation in skeletal muscles due to up-regulation of
genes of fatty acid oxidation and through activation of the AMPK
pathway [41]. AMPK inhibits acetyl-CoA carboxylase and thus reduces
cellular levels of malonyl-CoA [41,55]. Malonyl-CoA is required for
fatty acid biosynthesis and also inhibits the mitochondrial carnitine
palmitoyltransferase 1 (CPT1) shuttle system, the rate-limiting step in
the import and oxidation of fatty acids in mitochondria. A decrease in
the cellular levels of malonyl-CoA in the muscle of SCD1−/− mice
would thus relieve the inhibition of CPT1 and direct fatty acids into
mitochondria, where they are oxidized [40] (Fig. 1). The combination
of an increase in FA oxidation and a decrease in lipogenesis could
account for the reduction in intracellular lipid content. It was shown
that in the muscle AMPK activation attenuates insulin resistance
induced by a high-fat diet [15,56]. In fat-fed rats, a single injection of
5-amino-4-imidazolecarboxamide riboside (AICAR) [15] or exercise
[57], both of which increase AMPK activity, caused an increase in
insulin-stimulated glucose uptake in the muscle 24 h later. AICAR has
also been shown to increase insulin-stimulated glucose uptake by the
muscle of control rats [15,56]. Thus, reduced contents of FFA, FA-CoA,
and ceramides as well as increased AMPK phosphorylation [41] might
contribute to increased insulin sensitivity in the muscle of SCD1−/−
mice (Fig. 1).

SCD1 deficiency also results in down-regulation of the expression
of PTP-1B, an enzyme that catalyzes rapid dephosphorylation of IR
and of IRS1 and 2 [35,54]. Down-regulation of PTP-1B expression and
activity is responsible for the sustained IR autophosphorylation
despite reduced levels of plasma insulin in the SCD1−/− mice
(Fig. 1). Insulin-mediated glucose uptake was also higher in the soleus
muscle from SCD1−/−mice, suggesting that IR is more responsive to
insulin in SCD1−/− than in SCD1+/+ mice [41]. Consistent with
these observations PTP-1B knockout mice exhibit increased tyrosine
phosphorylation of IR and IRS1 in the muscle [58]. PTP-1B−/− mice
also show increased insulin sensitivity and are resistant to diet-
induced obesity. Thus, the phenotypes exhibited by PTP-1B−/−mice
are similar in many ways to those of SCD1−/− mice. It is not known
at present whether PTP-1B is a downstream target of SCD1 expression
or whether the decrease observed in its expression is a secondary
consequence of altered lipid homeostasis, due to changes in
intracellular lipid levels, as a result of SCD1 deficiency.
The other possible mechanism that could lead to increased insulin
signaling in SCD1−/−mice is that alterations in the properties of the
cell membrane, which is composed largely of lipids, activate the IR.
Oleate is the major monounsaturated fatty acid (MUFA) found in
membrane phospholipids, and the ratio of saturated to monounsat-
urated fatty acids has been implicated in alteration of membrane
fluidity [31]. It is proposed that the decrease in the MUFA content of
the membrane phospholipids in the SCD1−/− mice is compensated
by polyunsaturated fatty acids causing an increase in membrane
fluidity due to the presence of more double bonds in the fatty acyl
chain. It was shown that the degree of insulin resistance in rodents
and humans is inversely correlated with the amount of polyunsatu-
rated fatty acids within the skeletal muscle phospholipids [59,60]. The
increased membrane fluidity would enhance IR aggregation, thus
increasing its phosphorylation upon insulin binding. More studies
will, however, be required to demonstrate a direct correlation
between insulin sensitivity and membrane fluidity.

Finally, one of the recent studies showed that expression of SCD1
is closely related to increased gene expression of adiponectin R2
receptor in human adipocytes [53]. It is thus possible that the meta-
bolic effect of SCD may be partially due to increased lipogenesis in
adipose tissue and potentiation of adiponectin signaling. However
more work needs to be done to confirm this hypothesis.

5. Conclusion

Over the past 7 years a substantial progress has been made in
identifying the physiological role of SCD. Using the knockout mouse
model, we have learned that SCD1, the isoform that is most widely
expressed and shows 85% homology to human SCD1, is a critical
control point of lipid partitioning. While high SCD activity favors fat
storage, suppression of the enzyme activates metabolic pathways that
promote the burning of fat and decrease lipid synthesis. SCD1 defi-
ciency up-regulates insulin-signaling components and affects glyco-
gen metabolism in insulin-sensitive tissues. Phosphorylation of serine
and threonine residues on IR, insulin receptor substrates (IRS1 and
IRS2), and on Akt has been shown to be the major regulatory event
in insulin signaling that is altered due to the lack of SCD1 function.
Much evidence indicates that the insulin-sensitizing effect of
SCD1 deficiency stems from increased activity of AMPK, improved
β-oxidation rate, depletion of the intracellular lipid stores as well as
from down-regulation of PTP-1B (Fig. 1). Increased SCD1 expression
has been found in insulin-resistant humans and animals, whereas
SCD1 deficiency attenuates both the high-fat-diet- and genetically-
induced impairment of insulin signaling. Furthermore, exercise and
several pharmacological agents and hormones, e.g. thiazolidinediones
and leptin, that have been useful in treating insulin resistance, were
shown to inhibit SCD1. The findings on SCD1 thus point to a poten-
tially novel strategy for the treatment of insulin resistance. However,
the potential use of an SCD inhibitor as a human therapeutic agent
awaits a more complete understanding of the mechanism underlying
the effects of SCD deficiency and an indication that inhibition of this
enzyme is both safe and efficacious.
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