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SUMMARY

Dysregulation of lipid metabolism in individual tis-
sues leads to systemic disruption of insulin action
and glucose metabolism. Utilizing quantitative lipi-
domic analyses and mice deficient in adipose tissue
lipid chaperones aP2 and mal1, we explored how
metabolic alterations in adipose tissue are linked to
whole-body metabolism through lipid signals. A
robust increase in de novo lipogenesis rendered
the adipose tissue of these mice resistant to the del-
eterious effects of dietary lipid exposure. Systemic
lipid profiling also led to identification of C16:1n7-
palmitoleate as an adipose tissue-derived lipid
hormone that strongly stimulates muscle insulin
action and suppresses hepatosteatosis. Our data
reveal a lipid-mediated endocrine network and dem-
onstrate that adipose tissue uses lipokines such
as C16:1n7-palmitoleate to communicate with dis-
tant organs and regulate systemic metabolic
homeostasis.

INTRODUCTION

In recent years, the world has seen an alarming increase in obe-

sity and related metabolic diseases such as diabetes, fatty liver

disease, and atherosclerosis that often form a disease cluster re-

ferred to as metabolic syndrome (Eckel et al., 2005). Dysregula-

tion of lipid metabolism has been identified as a critical contrib-

utor to the mechanistic link between these pathologies (Ginsberg

et al., 2006). For example, increased release of free fatty acids

(FFAs) from adipose tissue has long been linked to muscle insulin

resistance (Bergman and Ader, 2000) and lipogenesis and stea-

tosis in liver (Ginsberg et al., 2006). The imbalance between liver-

derived very-low-density lipoprotein (VLDL) and high-density

lipoprotein (HDL) is a critical risk factor for the development of

atherosclerosis and has also been linked to insulin resistance

at peripheral tissues (Avramoglu et al., 2006). Epidemiological

and clinical studies indicate that dietary lipids affect and some-

times even determine the course of development of metabolic
syndrome (Warensjo et al., 2005). Despite a growing body of ev-

idence supporting the key role lipid metabolism plays in meta-

bolic diseases, the underlying mechanistic details by which alter-

ations in tissue-specific lipid metabolism are directly integrated

into systemic metabolic homeostasis are not well understood.

Many lipid species interact with fatty acid-binding proteins

(FABPs), lipid chaperones that dictate the partitioning of lipids in-

side cells. Several FABPs have been reported to play critical

roles in systemic metabolism (Furuhashi and Hotamisligil,

2008). Mice deficient in the major adipose FABP (aP2) have im-

proved insulin sensitivity (Hotamisligil et al., 1996). The com-

bined deficiency of aP2 and mal1 (FABP4 and FABP5, respec-

tively) has a profound impact on systemic metabolic regulation

and renders mice resistant to almost all components of meta-

bolic syndrome (Maeda et al., 2005). Liver FABP-deficient mice

gain less weight and have reduced hepatic steatosis (Newberry

et al., 2006). Moreover, FABP expression is often altered in met-

abolic diseases such as atherosclerosis, type 2 diabetes, and

obesity. This also applies to human disease where a genetic var-

iation at the aP2 locus has been linked to cardiovascular disease

and diabetes (Tuncman et al., 2006). The critical role of FABPs in

metabolic diseases was highlighted by the recent demonstration

that an orally active aP2 inhibitor could ameliorate metabolic

syndrome in mice (Furuhashi et al., 2007). Since expression of

most FABPs is highly tissue-specific, it is generally assumed

that genetic manipulation would lead to alterations in lipid pro-

files, metabolic responses, or other functions restricted to those

sites. In practice, however, changes resulting from FABP defi-

ciency, especially adipose tissue FABPs (4 and 5), are often sys-

temic, indicating that these molecules represent part of an endo-

crine pathway(s) that organisms have evolved to maintain overall

metabolic balance. Hence, genetic loss-of-function models of

cytosolic lipid chaperones constitute powerful experimental sys-

tems for the exploration of unique aspects of lipid metabolism

and signaling both inside cells and between organs.

In this study, we utilized adipose tissue lipid chaperones to

explore lipid-based pathways and signals by which local al-

terations in adipose tissue are connected to systemic meta-

bolic outcomes. Utilizing high-density, quantitative lipidomic

analysis, as well as physiological and molecular approaches

in FABP-deficient models, we provided evidence that the im-

pact of adipose tissue on the specific composition of local
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and circulating FFAs is critical in determining metabolic out-

comes. We then identified a specific lipid hormone or a ‘‘lipo-

kine’’ responsible for linking adipose tissue to systemic me-

tabolism.

RESULTS

Impact of Lipid Chaperones on Systemic Lipid
Distribution and Composition
We have previously observed significant changes of major lipid

clusters in aP2-mal1�/� (FABP-deficient, FABP�/�) mice, raising

the possibility that circulating lipids might regulate systemic met-

abolic responses in this model (Maeda et al., 2005). To explore

the role of FABP-regulated lipid signaling networks in metabolic

homeostasis, we performed high-resolution lipidomics analyses

that allow for accurate quantification of over 400 lipid species in

a single sample.

We analyzed plasma and all major insulin-responsive tissues

from WT and FABP�/� mice kept on either regular or high-fat

diet (HFD). To capture all FABP-deficiency- or diet-driven alter-

ations in lipid profile, we first performed unsupervised cluster

analyses focusing on all lipid species that exhibit statistical dif-

ferences. Tissue samples from individual WT or FABP�/� mice

under the same diet segregated into tight clusters (Figure 1A), in-

dicating that the lipid chaperones have profound effects on sys-

temic lipid metabolism and that their absence in adipose tissue

caused identifiable global changes in tissue lipid profiles. More-

over, plasma, liver, and muscle tissues of mice on either diet fell

into distinctly separated clusters irrespective of genotype

(Figure 1A), indicating that dietary lipids have greater effects

than genotype on lipid composition and metabolism in these tis-

sues. This is not unexpected, since dietary intake is a major fac-

tor that determines tissue lipid composition (Field and Clandinin,

1984). Surprisingly, however, adipose tissues of FABP�/� mice

under HFD clustered with both genotypes on regular diet

(Figure 1A), indicating that specifically in adipose tissue, FABP

deficiency has greater effects on lipid composition than does

diet. Indeed, the adipose tissue of these mice maintained a lipid

profile reminiscent of lean, insulin-sensitive WT controls despite

exposure to HFD and dramatically differed from that of obese

and insulin-resistant WT animals.

Next, we used two additional approaches to further explore

the impact of lipid chaperones on tissue responsiveness to

diet. First, we performed principal component analysis (PCA)

to reveal the main factors underlying the structure of the local

and systemic lipid profiles (Figure 1B). For plasma, liver, and

muscle, the first two principal components effectively sepa-

rated the animals into four distinct groups, the first principal

component separating diets (x axis) and the second separating

genotypes (y axis). For adipose tissue, however, the data points

representing FABP�/� mice on both diets were essentially over-

lapping, indicating that the dietary effects at this site are signif-

icantly less pronounced. Next, we calculated the strength of the

impact of diet on each tissue and expressed the ranked p

values against each other (Figure 1C). This analysis did not

identify differences between genotypes in muscle. In contrast,

adipose tissue of FABP�/� mice had substantially fewer lipid

species that were regulated by diet than did that of the WT.
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These observations support the argument that unlike other tis-

sues, HFD fails to cause a significant change in the overall lipid

profile of adipose tissue in FABP�/� mice. A similar property

was also detected upon examination of the triglyceride (TG)

component, which was dissociated from dietary intake specif-

ically in adipose tissue of FABP�/� mice (Figure S1 available

online).

These results clearly demonstrate that lipid chaperones are re-

quired intermediaries between dietary input and adipose tissue

lipids. This is an unprecedented and remarkable result, given

that even the mutation of genes directly involved in lipid metab-

olism can rarely render tissue lipid profiles resistant to dietary

effects.

Enhanced De Novo Lipogenesis in Adipose Tissue Leads
to Dramatically Increased Plasma C16:1n7-Palmitoleate
Since adipose tissue of FABP�/� mice is resistant to diet-

induced insulin resistance, the unique lipid profile observed in

these mice suggests a direct link between lipid metabolism

and composition and the improved metabolic responses in

these animals. Therefore, we examined the lipid profile of this

tissue in detail. We observed a striking enrichment of one par-

ticular fatty acid, C16:1n7-palmitoleate (Figure 2A), in all major

lipid classes analyzed in adipose tissues of FABP�/� mice. In

fact, palmitoleate was by far the most significantly regulated

lipid species in adipose tissue (Figure 2B). Adipose tissue is

the major source of circulating FFAs, and alterations in adipose

lipid metabolism are often reflected in plasma FFAs. Systematic

comparison of plasma FFAs in FABP�/� versus WT mice iden-

tified palmitoleate as the top ranking species among all regu-

lated lipids (Figure S2). Plasma palmitoleate concentration

was increased in FABP�/� mice under both regular and high-

fat diets, and the magnitude of the absolute quantitative in-

crease was very substantial, rendering palmitoleate as the third

most abundant FFA in the plasma of FABP�/� animals

(Figure 2C and Figure S3). Analysis of other essential lipid spe-

cies both in individual tissues and systemically (Figures S4–S6)

did not identify any major changes. These observations led us

to investigate the possibility that increased adipose and serum

palmitoleate might be a key change in lipid metabolism that un-

derlies the improved systemic energy homeostasis in FABP�/�

mice. Total palmitoleate in the adipose tissue of WT mice was

reduced by nearly 50% upon exposure to HFD, but FABP�/�

animals experienced only 10% reduction, demonstrating that

FABP-deficiency produces marked resistance to dietary regu-

lation of palmitoleate in adipose tissue (Figure 2D). Using

post hoc comparisons of our lipidomic analysis, we found

that there was a dramatic decrease of palmitoleate in adipose

triglyceride of WT mice on HFD compared to controls on regu-

lar diet (Figure S7). In contrast, there was no difference in pal-

mitoleate between FABP�/� mice on either diet. This resistance

to dietary suppression of palmitoleate was also reflected in

plasma (Figure S3). In short, increased palmitoleate in adipose

tissue and plasma is the most significant change in overall lipid

metabolism in FABP�/� mice.

Palmitoleate is a unique fatty acid that serves as a marker for

de novo lipogenesis, a process that converts glucose to fatty

acids. The levels of palmitoleate in the diet are low, and



consequently its concentration in tissues is minimal, although

concentrations can quickly and substantially increase upon ac-

tivation of de novo lipogenesis. The pattern we observed sug-

gested a potential regulatory role for lipid chaperones in the

production of this lipid signal and warranted an investigation

of palmitoleate’s mechanism of action and effects on biological

outcomes.

Contribution of C16:1n7-Palmitoleate in Plasma Lipids
to Metabolic Regulation
Increased circulating FFAs in obesity have been linked to periph-

eral insulin resistance and enhanced lipid synthesis and accu-

mulation in liver. Paradoxically, however, FABP�/� mice have

significantly higher total plasma FFAs than do WT controls and

yet maintain superior insulin sensitivity and are completely pro-

tected from fatty liver disease (Maeda et al., 2005). Neither adi-

ponectin nor leptin plays a significant role in this metabolic profile

(Cao et al., 2006), indicating that palmitoleate might be a hor-

Figure 1. Whole-Body Lipid Profiling

(A) Dendrograms of hierarchical clustering of sub-

jects, based on lipid profiles. Only fatty acids with

a p value < 0.05 from a one-way ANOVA were in-

cluded. R, regular diet; HF, high-fat diet; KO,

FABP�/� mice.

(B) Scatter plots of principal components from

principal component analysis on subjects. Only

fatty acids with a p value < 0.05 from a one-way

ANOVA were included.

(C) Strength of differences between diets in the WT

and FABP�/� (KO) mice over all fatty acids inall lipid

classes. Each point on a line indicates the number

of p values of one group that are smaller than the p

value of equal ranking of the other group.

monal signal emerging from adipose tis-

sue to improve systemic metabolic out-

comes in FABP�/� mice.

To examine this possibility, we devel-

oped several highly sensitive assays to

probe the functional profile and activities

of plasma lipids. We chose SCD-1 as

a readout because hepatic SCD-1 activity

is suppressed in FABP�/� mice under

diet-induced or genetic obesity (Cao

et al., 2006; Maeda et al., 2005). Hepatic

SCD-1 expression is regulated by a vari-

ety of hormones and nutritional factors in-

cluding insulin and polyunsaturated fatty

acids (PUFAs) (Ntambi and Miyazaki,

2004) via transcription factor-binding ele-

ments located 1.5 kb upstream of the

SCD-1 transcription initiation site (Chu

et al., 2006; Ntambi, 1999). We cloned

this promoter region in front of luciferase

gene and produced a reporter adenovi-

rus. FAO rat hepatoma cells infected

with this adenovirus were responsive to

PUFAs, consistent with previous observations (Figure S8). We

then adapted this assay system to a microplate format, sensitive

to small amounts of lipids, which allowed us to test the effects of

lipids extracted from plasma of WT and FABP�/� animals.

Although SCD-1 promoter activity in liver cells treated with

lipids from WT plasma showed little difference from that in non-

treated cells, the reporter activity in cells treated with lipids

extracted from FABP�/� plasma was reduced by 40%

(Figure 3A). These results indicate that plasma lipids from

FABP�/� mice carry an activity that suppresses SCD-1 expres-

sion in liver cells. To distinguish between differences in the total

lipid amount versus lipid composition, we generated mixtures of

FFAs with the same molar ratios detected in WT or FABP�/�

plasma lipids using the major fatty acids listed in Figure 2C. Inter-

estingly, these lipid mixtures exerted the same pattern of activity

as their corresponding plasma composition (Figure 3B). When

the high concentration of palmitoleate in the lipid mixture mim-

icking the plasma of FABP�/� mice was reduced to the level

seen in WT mice without other lipid components or total content
Cell 134, 933–944, September 19, 2008 ª2008 Elsevier Inc. 935



being changed, the SCD-1-suppressing activity was significantly

diminished (Figure 3B). These results demonstrate that palmito-

leate is the main lipid component contributing to the regulation of

SCD-1 expression. Plasma of FABP�/� mice also exhibits

slightly reduced palmitate and stearate (Figure 2C), which might

explain the residual activity retained in lipid mixture mimicking

FABP deficiency after the reduction of palmitoleate. Indeed, after

adjustment of these two lipid quantities in FABP�/� lipid mixture

to WT levels, the SCD-1-suppressing activity was completely

lost (Figure 3B).

Previously, we have also observed significantly improved

whole-body glucose disposal and increased muscle glucose up-

take in FABP�/�mice. To investigate whether plasma lipids play

a role in regulating muscle insulin action, we treated differenti-

Figure 2. Adipose De Novo Lipogenesis

and Palmitoleate Production

(A) Difference of major fatty acids in diacylglycerol,

free fatty acid, phospholipid, and triglyceride frac-

tions in adipose tissue between the means of WT

and FABP�/� mice.

(B) Lipid class composition analysis for fatty acids

in adipose tissue. The top 36 metabolites are

shown. The F statistics from a one-way ANOVA

are displayed as red diamonds over the distribu-

tion of F statistics from permuted data. The black

line is the maximum F statistic observed in 100

permutations. The heat map displays the ob-

served data, centered to the mean of the control

group and scaled by the standard deviation of all

observations.

(C) Plasma fatty acids in WT or FABP�/� (KO) mice.

(D) Percentile suppression of palmitoleate by HFD

in adipose tissue of WT or KO mice.

Error bars represent the SEM.

ated C2C12 myotubes with lipid extracts

and determined insulin-stimulated AKT

phosphorylation using an ELISA system.

We found that myotubes pretreated with

plasma lipids extracted from FABP�/�

mice had significantly enhanced AKT

phosphorylation upon insulin treatment

compared to those exposed to WT lipids

(Figure 3C). Similar results were also

observed by immunoblotting analysis

(Figure 3C, inset). These results indicated

that the unique plasma lipid profile of

FABP�/� mice may also play a role in

the insulin-sensitizing effect of FABP

deficiency on muscle tissue.

Obesity is associated with low-grade

inflammation in liver and adipose tissues,

which contributes to the development of

systemic insulin resistance (Hotamisligil,

2006). To explore the effect of plasma

lipids on inflammatory responses, we

treated explants of adipose tissue with

lipids from WT or FABP�/� mice. MCP-1

secretion from adipose explants treated with WT lipids was

significantly higher than those treated with FABP�/� lipids (Fig-

ure 3D), suggesting that these lipids also regulate adipose tissue

inflammatory output. Since adipose tissue contains multiple cell

populations in addition to fat cells, we separated adipose tissue

into adipocytes and stromal vascular fractions and treated each

fraction with either palmitate or palmitoleate. Interestingly, pal-

mitoleate suppressed cytokine expression in adipocyte fractions

as compared to palmitate, but the two lipids have similar effects

on stromal vascular cells (Figure S9). These results indicate that

adipocytes are the major targets for bioactive lipids.

Our observations to this point raise the possibility that palmito-

leate is the lipid species responsible, at least in part, for the met-

abolic activities linked to adipose tissue FABPs. To investigate
936 Cell 134, 933–944, September 19, 2008 ª2008 Elsevier Inc.



Figure 3. Metabolic Regulation by Plasma

Lipids

(A) SCD-1 promoter activities in control hepato-

cytes (No lipid) or hepatocytes treated with plasma

lipids extracted from WT or FABP�/� (KO) mice.

(B) SCD-1 promoter activities in hepatocytes

treated with fatty acid mixtures resembling the

ratio of plasma fatty acids from WT mice (WT Mix),

KO mice (KO Mix), KO mice with the concentration

of palmitoleate of WT mice (KO Mix, � 16:1n7), or

KO mice with the concentration of palmitoleate,

palmitate, and stearate of WT mice (KO Mix, � 16:

1n7, + 16:0 18:0). Asterisk, significantly different

from WT mix; a and b, significantly different from

KO Mix.

(C) Insulin-stimulated AKT phosphorylation in

C2C12 myotubes treated with plasma lipids ex-

tracted from WT or KO mice. Values of bar plot

were determined by phospho-AKT ELISA, and

corresponding immunoblotting results are shown

as insets.

(D) MCP1 in conditional medium of adipose ex-

plants treated with plasma lipids of WT or KO

mice.

(E) SCD-1 promoter activities in hepatocytes

treated with fatty acids. All fatty acids were used

at 300 mM final concentration, except 16:1n7 2x

is 600 mM. AA, arachidonic acid; asterisk, signifi-

cantly different from controls; a, significantly dif-

ferent from AA-treated cells; b, significantly differ-

ent from palmitate-treated cells.

(F) Immunobloting of Flag-tagged SCD-1 in hepa-

tocytes treated with control, palmitate, and palmi-

toleate. Tubulin was used as loading control.

(G) AKT phosphorylation in C2C12 myotubes

treated with fatty acids and insulin. a, significantly

different from cells treated with insulin; b, signifi-

cantly different from cells treated with both insulin

and palmitate. The bottom panel shows the corre-

sponding immunoblotting of total and phosphory-

lated AKT in cells treated with pooled lipids.

(H) Glucose uptake in C2C12 myotubes treated

with insulin or palmitoleate. The bottom panel is

immunoblotting of C2C12 cell lysates treated

with insulin or palmitoleate with anti-Glut1 or

Glut4 antibodies. Asterisk, p < 0.05.

Error bars represent the SEM.
this, we treated liver cells expressing the SCD-1 promoter re-

porter with palmitoleate and several other lipids. In this setting,

palmitate increased SCD-1 promoter activity, whereas palmito-

leate suppressed it (Figure 3E). Interestingly, palmitoleate also

antagonized the effect of palmitate on SCD-1 promoter activity

when cells were treated with a mixture of the two lipids. The sup-

pressive impact of palmitoleate on SCD-1 promoter activity was

comparable to arachidonic acid (AA), the well-established lipid

mediator known to suppress SCD-1 expression. Since palmito-

leate is nearly ten times more abundant in the plasma of FABP�/�

mice than AA (Figure 2C), it is more likely to account for the reg-

ulation of SCD-1 under physiologically relevant conditions. We

also examined the effects of palmitoleate on SCD-1 protein,

which is known to have a very short half-life (Heinemann and

Ozols, 2003), by expressing a Flag-tagged SCD-1 under the cy-

tomegalovirus (CMV) promoter. Whereas palmitate stabilized
SCD-1, palmitoleate significantly increased SCD-1 protein deg-

radation (Figure 3F). This observation suggests that palmitoleate

regulates SCD-1 abundance via several parallel mechanisms,

which may collectively cause the dramatic suppression of liver

SCD-1 activity in FABP�/� mice (Maeda et al., 2005).

To explore the effect of palmitoleateon muscle insulinsignaling,

we pretreated C2C12 myotubes with either palmitate or palmito-

leate and then stimulated with insulin. Palmitate significantly

reduced insulin-stimulated AKT phosphorylation, whereas palmi-

toleate has little effect on its own (Figure 3G). When cells were

cotreated with both lipids, however, palmitoleate rescued the pal-

mitate-induced reduction in insulin-stimulated AKT phosphoryla-

tion. Moreover, palmitoleate itself stimulated glucose uptake into

C2C12 cells to a level similar to insulin (Figure 3H). The mecha-

nism of this increase is not known and is not associated with

alterations in the levels of Glut1 and Glut4 proteins (Figure 3H).
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Whole-Body Metabolism of Palmitoleate Supports Its
Role in Systemic Metabolic Regulation
To investigate tissue-specific effects of palmitoleate in meta-

bolic homeostasis, we first examined metabolism of palmito-

leate in muscle and liver in relation to adipose tissue by utilizing

lipidomic and informatic tools. The supply of fatty acids to mus-

cle is comprised mainly of FFAs derived from adipose tissue

and fatty acids liberated from VLDL triglycerides that are de-

rived from liver. Tracing lipid fluxes under normal physiological

conditions is technically very challenging, but the unique lipid

paradigm revealed by the systemic lipid profiling in this study

allowed us to model and examine lipid fluxes among key tis-

sues. We first compared palmitoleate in FFA fractions and

found that the concentrations of muscle palmitoleate closely re-

sembled those observed in plasma, which were themselves

a direct reflection of adipose FFAs (Figure 4A). In contrast, pal-

mitoleate in muscle triglyceride showed a clear difference from

the pattern of plasma TG palmitoleate, which was derived from

liver (Figure 4A). These results suggest that the strong flux of

palmitoleate from adipose tissue to muscle is the underlying

mechanism for palmitoleate enrichment of this site in FABP�/�

Figure 4. Systemic Palmitoleate Metabo-

lism

(A) Free fatty acid and triglyceride flux among ad-

ipose, muscle, and liver tissues. Means and SEM

of palmitoleate in free fatty acids (FFA) and triglyc-

eride (TG) in plasma and adipose, muscle, and

liver tissues of WT and FABP�/� mice are shown.

The predicted lipid flux based on the tissue lipid

profile pattern is indicated by the direction of ar-

rows. Muscle fatty acids are mainly derived from

liver in the form of VLDL-associated TG and from

adipose tissue in the form of FFAs.

(B) Percentile suppression of palmitoleate by HFD

in TG fraction of muscle tissue in WT or KO mice.

(C) Total palmitoleate in liver of WT or KO mice.

(D) Triglycerides in liver of KO mice injected with

control or SCD-1 adenoviruses. Asterisk, p < 0.05.

Error bars represent the SEM.

mice and is consistent with our previ-

ous projections. Consequently, palmito-

leate levels were reduced in WT muscle

by HFD. This reduction also occurred,

but to a significantly less extent, in

FABP�/� mice (Figure 4B), a pattern

that matches the adipose tissue lipid

profiles (Figure 2D). In light of palmito-

leate’s effect on improving insulin sensi-

tivity in vitro, such a strong flux of this

particular lipid from adipose tissue to

muscle would have the potential to

enhance insulin signaling at this site.

We were unable to identify significant

changes in neutral lipids and phospho-

lipids (Figure S10), further supporting

that the enrichment of palmitoleate is

the major changes in muscle lipid me-

tabolism of FABP�/� mice that might contribute to improved in-

sulin sensitivity.

We next examined palmitoleate metabolism in WT and

FABP�/� livers under conditions of regular and high-fat diet.

Total palmitoleate was sharply increased by HFD in the liver tis-

sue of WT but not in FABP�/� mice (Figure 4C), despite the fact

that FABP�/� mice have dramatically increased plasma palmi-

toleate under both conditions. This result strongly suggests that

the majority of palmitoleate in liver cannot be accounted for by

adipose-derived FFAs. Indeed, palmitoleate levels in liver are

closely associated with lipogenic gene expression at this site,

consistent with endogenous production by hepatocytes. Sev-

eral lipid synthetic genes, particularly SCD-1, were significantly

increased by HFD in the liver tissues of WT but not FABP�/�

mice (Maeda et al., 2005). Thus, the high levels of circulating

palmitoleate in FABP�/� mice may play a regulatory role on

the lipogenic programming of the liver rather than serve as

a substrate to drive triglyceride synthesis. If this is indeed the

case, reconstitution of SCD-1 should revert this phenotype.

We expressed SCD-1 in the liver of FABP�/� mice on HFD us-

ing adenovirus-mediated gene expression in vivo (Figure S11).
938 Cell 134, 933–944, September 19, 2008 ª2008 Elsevier Inc.



Expression of SCD-1 was sufficient to increase triglyceride syn-

thesis in FABP�/� mice and elevated hepatic triglyceride levels

similar to that of WT mice on HFD (Figure 4D). These data verify

our hypothesis and demonstrates that suppression of SCD-1

activity is a key factor determining the liver steatosis phenotype

in FABP�/� mice.

SCD-1 Expression Is Regulated by a Lipid Signal Derived
from Adipose Tissue
To establish the link between lipid signals and FABP-deficiency-

induced suppression of liver SCD-1, we designed a unique

SCD-1 promoter-driven reporter system that had specifically

lost its responsiveness to fatty acids. A short, 60 bp, polyunsatu-

Figure 5. Lipid-Mediated Regulation of SCD-1 Promoter Activity

In Vivo

(A) Schematics of SCD-1 �1500bp promoter. PUF, polyunsaturated fatty acid

response element.

(B) Regulation of WT and mutant SCD-1 promoter activities by fatty acids. AA,

arachidonic acid.

(C) Regulation of wild-type and mutant SCD-1 promoter activities by plasma

lipids. Plasma lipids extracted from WT or FABP�/� (KO) mice were used to

treat FAO cells infected with WT or mutant SCD-1 promoter-carrying adenovi-

ruses, and luciferase assays were performed as described in the Experimental

Procedures.

(D) In vivo regulation of WT and mutant SCD-1 promoter activities. Luciferase

assays were performed on liver tissues of WT or KO mice injected with WT or

mutant SCD-1 reporter-carrying adenoviruses.

(E) Liver gene expression in mice infused with vehicle, TG:palmitate or TG:pal-

mitoleate. Asterisk, p < 0.05.

Error bars represent the SEM.
rated fatty acid response element (PUF) is required for regulation

of SCD-1 expression by PUFA but not by hormones such as

insulin (Waters et al., 1997) (Figure 5A). We deleted this PUF

element from the SCD-1 promoter and produced adenoviruses

to express this reporter. In FAO cells infected with the intact

SCD-1 promoter reporter, transcriptional activity was sup-

pressed by both AA and palmitoleate and increased by palmitate

(Figure 5B). However, in cells expressing the mutant promoter,

there was no difference in the reporter activity between control

and lipid treatments (Figure 5B), demonstrating that the PUF

element is specifically required for lipid regulation of the SCD-1

promoter. We then treated cells expressing the mutant promoter

with WT or FABP�/� plasma lipid extracts. In this setting, the

suppression of the SCD-1 promoter activity by FABP�/� lipids

was lost (Figure 5C), demonstrating that the PUF sequence is

required for the SCD-1 promoter to respond to plasma-derived

lipids. To test this in mice, we injected the reporter adenoviruses

into mice fed with HFD. The intact SCD-1 promoter was regu-

lated in a manner similar to liver SCD-1 mRNA in vivo (Maeda

et al., 2005), because promoter activity in the liver of WT mice

was 5- to 10-fold higher than that observed in FABP�/� animals

(Figure 5D). In contrast, activity of the mutant promoter showed

no difference between FABP�/� mice and WT controls

(Figure 5D). This result strongly suggests that reduced hepatic

SCD-1 expression in FABP�/� mice is mediated by an adi-

pose-derived plasma lipid signal, which is likely to be palmito-

leate. To test this hypothesis, we studied the effects of lipid infu-

sion on liver gene expression. After a 6 hr infusion as detailed in

the next section, TG-palmitoleate caused a substantial decrease

in SCD-1, fatty acid synthase (FAS), and fatty acid elongase 6

(ELOVL6) expression in liver compared to vehicle. In contrast,

TG-palmitate infusion resulted in an increase in all of these lipo-

genic genes in liver (Figure 5E). These results confirm that the

alteration of a single fatty acid in circulation can effectively regu-

late liver gene expression and that palmitoleate can indeed

directly suppress SCD-1 expression in this in vivo setting.

Adipose-Specific Activation of De Novo Lipogenesis
in the Absence of Lipid Chaperones
To investigate the molecular basis of altered de novo lipogenesis

in FABP�/� mice, we examined lipogenic gene expressions in

the adipose tissues of WT and FABP�/� mice. We detected

marked stimulation (5- to 10-fold) of FAS, SCD-1, and ELOVL6,

the three principal enzymes that mediate de novo fatty acid syn-

thesis, in adipose tissues of FABP�/� mice (Figure 6A). This in-

crease is remarkable considering that adipose tissue is already

highly enriched in these enzymes. This gene expression profile

is also in agreement with the increased concentration of palmito-

leate, the main product of de novo lipogenesis. Interestingly, we

also found that HFD significantly suppressed lipogenic gene ex-

pression in WT, but to a far lesser extent than in FABP�/� mice,

which is consistent with reduced adipose tissue and plasma pal-

mitoleate in WT but not in FABP�/� mice on a HFD.

The marked increase of genes involved in fatty acid synthesis

in adipose tissue of FABP�/�mice and the unresponsiveness to

HFD suggests that these lipid chaperones are integral compo-

nents of lipid-mediated regulation of gene expression. To ad-

dress this, we produced adipogenic cell lines from FABP�/�
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mice and differentiated them into adipocytes (Figure S12). In this

system, exogenously expressed FABPs strongly and additively

suppressed both SCD-1 and FAS promoter activities (Figure 6B).

These results indicate that lipid chaperones suppress the ex-

pression of lipogenic genes in adipocytes, and loss of these pro-

teins leads to increased expression of genes in the lipid synthesis

pathway, an observation consistent with our findings in the adi-

pose tissue of FABP�/�mice. We also tested this pattern in vivo

by blocking aP2 function in mice with an orally administrated

synthetic inhibitor. This treatment generated effects that closely

paralleled the beneficial phenotypes of genetic FABP deficiency

(Furuhashi et al., 2007), and as would be expected, aP2 inhibitor

treatment led to increased lipogenic gene expression in adipose

tissues of WT mice (Figure 6C).

We have identified opposite patterns of SCD-1 expression in

the liver versus adipose tissue of FABP�/� mice, a pattern likely

regulated by the lipid palmitoleate. If our hypothesis were correct,

this pattern would apply to other genes involved in lipogenesis in

these tissues. Therefore, we extended our study to examine the

major genes in fatty acid, cholesterol, and triglyceride synthesis.

These genes also displayed a striking and diametrically opposite

Figure 6. Regulation of Lipogenic Genes in Adipose

and Liver of WT and FABP�/� Mice

(A) Lipogenic gene expression in adipose tissue of WT and

FABP�/� (KO) mice. Gene expression patterns in epididymal

fat pad were determined by quantitative real-time PCR.

(B) Regulation of lipogenic gene promoter activites by FABPs

in differentiated adipocytes. Differentiated FABP�/� adipo-

cytes that expressed SCD-1 or FAS promoter luciferase con-

structs were infected with GFP, aP2, or both aP2 and mal1

adenoviruses, and luciferase activities were determined by

dual-glow luciferase system. a, significantly different from

GFP-adenovirus-infected cells; b, significantly different from

aP2-adenovirus-infected cells.

(C) Regulation of lipogenic gene expression in adipose tissue

of mice treated with aP2 inhibitor. Gene expressions in epidid-

ymal fat pads from mice treated with vehicle or aP2 inhibitor

were determined with quantitative real-time PCR.

(D) Differential regulation of lipogenic gene expression in adi-

pose and liver tissues. Levels of the mRNAs in liver and epidid-

ymal fat pad from mice fed with HFD were determined, and WT

liver and KO adipose were set as 1. ACC1, acetyl-CoA carbox-

ylase1; DGAT1, acyl-CoA:diacylglycerol acyltransferase 1.

Asterisk, p < 0.05.

Error bars represent the SEM.

pattern of expression between adipose and liver tis-

sues in WT and FABP�/�mice (Figure 6D).

Increased Circulating Palmitoleate
Regulates Insulin Action
Intralipid infusion has been widely used to investi-

gate the relationship between plasma FFAs and in-

sulin resistance, but almost all studies using this

protocol utilized preparations of natural lipid prod-

ucts containing a variety of fatty acids (Kim et al.,

2004;Yu et al., 2002). To define the effects of individ-

ual fatty acids on metabolic regulation, we prepared

Intralipid with triglycerides composed of a single fatty acid, either

TG-palmitoleate or TG-palmitate. Infusion of either lipid resulted

in a 2-fold increase in total plasma FFA levels with similar dynam-

ics (Figure S13). Although TG-palmitate suppressed the entire

proximal insulin-signaling pathway including activation of insulin

receptor and phosphorylation of insulin receptor substrate 1, 2

and AKT in liver, TG-palmitoleate strongly potentiated these insu-

lin actions (Figure 7A). We observed similar effects of both lipids

on muscle tissue where palmitoleate enhanced and palmitate

impaired insulin signaling (Figure 7B). These results clearly indi-

cated that specific alteration of a single serum lipid is sufficient

to regulate insulin action in peripheral tissues and that increased

circulating palmitoleate enhances insulin sensitivity.

To investigate whether the increased insulin signaling by ele-

vated serum palmitoleate can be translated into improved glu-

cose metabolism, we performed hyperinsulinemic-euglycemic

clamp studies on mice infused with either vehicle or palmito-

leate. To enable delivery of the lipid at a rate that is compatible

with clamp studies, we used fatty acid:palmitoleate instead of

TG:palmitoleate and confirmed that palmitoleate enhanced

muscle and liver insulin signaling in this setting by examining
940 Cell 134, 933–944, September 19, 2008 ª2008 Elsevier Inc.



Figure 7. Regulation of Insulin Signaling

and Glucose Metabolism by Palmitoleate

(A) Basal and insulin-stimulated phosphorylation

of insulin receptor (IR), insulin receptor substrate-1

(IRS-1) and -2 (IRS-2), and AKT in liver of mice in-

fused with vehicle (Veh), TG:palmitoleate (16:1n7),

or TG:palmitate (16:0). Representative blots are

shown, and quantifications on the right are aver-

aged results of three mice in each treatment

group.

(B) Basal and insulin-stimulated phosphorylation

of insulin receptor (IR), insulin receptor substrate-1

(IRS-1), AKT, and GSK in muscle tissues of mice

infused with vehicle (Veh), TG:palmitoleate

(16:1n7) or TG:palmitate (16:0). Representative

blots are shown, and quantifications on the right

are averaged results of three mice in each treat-

ment group.

(C) Basal hepatic glucose production (bHGP) of

mice infused with vehicle (Veh) or palmitoleate

(16:1n7).

(D) Glucose infusion rate (GIR) of mice treated with

vehicle (Veh) or palmitoleate (16:1n7) during hy-

perinsulinemic-euglycemic clamp.

(E) Hepatic glucose production (Clamp HGP) of

mice infused with vehicle (Veh) or palmitoleate

(16:1n7) during hyperinsulinemic-euglycemic

clamp.

(F) Glucose disposal rate (RD) in mice infused with

vehicle (Veh) or palmitoleate (16:1n7) during hy-

perinsulinemic-euglycemic clamp.

(G) Regulation of systemic metabolic responses

by adipose-derived lipid hormones (Lipokines). In

parallel with a variety of adipokines, specific lipids

released from adipocytes in response to physio-

logical stimuli act at remote sites including liver

and muscle and regulate systemic lipid and carbo-

hydrate metabolism. Lipid chaperones negatively

regulate one of these lipokines, C16:1n7-palmito-

leate, and in the absence of these FABPs, strong

flux of palmitoleate from adipose tissue to liver

and muscle results in improved metabolic re-

sponses.

Error bars represent the SEM.
insulin stimulated activation of insulin receptor and AKT

(Figure S14). Hyperinsulinemic-euglycemic clamp studies indi-

cated that mice infused with palmitoleate required significantly

higher glucose infusion rates to maintain euglycemia (Figure 7D).

Neither basal nor clamped hepatic glucose production was

significantly changed by palmitoleate infusion as compared to

vehicle (Figures 7C and 7E). Instead, the increased glucose infu-

sion rate in these mice was principally driven by enhanced

whole-body glucose disposal (Figure 7F), confirming that the

increased insulin signaling by palmitoleate can be directly

reflected as improved glycemic control in conscious mice. These

observations indicate that palmitoleate acts as an insulin-

sensitizing hormone improving glucose metabolism.

DISCUSSION

Studies in recent years have identified adipose tissue as a critical

site for whole-body metabolic regulation. Growing evidence
supports the concept that peptides and hormones produced

within adipose tissue constitute an important component of the

endocrine effects of this site on systemic carbohydrate and lipid

homeostasis. As the major storage site for lipids, adipose tissue

has also been studied intensively in regards to its role in meta-

bolic regulation through lipid signaling. Although equally critical

as peptide hormones, this area has been more challenging to re-

duce into molecular entities and pathways. There are two pre-

vailing views about the role of adipose tissue lipid metabolism

in metabolic syndrome. First, storage of lipids in adipose tissue

has been suggested to protect other organs from exposure to

excessive lipids and thereby to reduce the risk of lipotoxicity.

Second, fatty acids derived from adipose tissue, particularly un-

der obese conditions, could disrupt the function of peripheral tis-

sues, resulting in muscle insulin resistance or hepatic steatosis.

In these models, the principal consideration has often been the

total amount of lipid exposure at target tissues. However, serum

lipids are very complex entities composed of structures with
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varying chain length and saturation. The concentration and com-

position of fatty acids also vary significantly under different phys-

iological and pathological conditions. Although it is unlikely that

evaluation of total fatty acid levels alone is sufficiently informa-

tive, there has been little progress in addressing how different

compositions of fatty acids in tissues or circulation affect the

metabolic output, as this has been experimentally challenging.

Another intractable question concerns how lipid-storing and/or

-disposing tissues respond to dietary fatty acid intake and adjust

their composition and hormonal output to modulate systemic

metabolism.

In this report, we took advantage of high-resolution, quantita-

tive lipidomic analysis combined with functional experimentation

to approach these questions. We also utilized the striking impact

of lipid chaperones on these paradigms in vivo to identify lipid

pathways that contribute to systemic metabolic homeostasis.

These approaches yielded several critical and unexpected re-

sults. First, we determined that the impact of diet on adipose lipid

composition and metabolism is under strict control of adipose

lipid chaperones and that these molecules ensure that dietary in-

put is a dominant determinant of fatty acid composition in fat. In

the absence of these proteins, adipose tissue is markedly refrac-

tory to the effects of diet on its lipid constituency and relies

heavily on de novo lipogenesis. Second, we have demonstrated

that adipose tissue regulates, in a lipid chaperone-dependent

manner, the metabolic activities of distant organs through its

lipid output and reduced this to a specific metabolic pathway

in the liver. Third, we identified a unique fatty acid, palmitoleate,

as a major signaling lipid hormone that controls several meta-

bolic activities in liver and muscle tissues. Finally, these studies

have allowed us to derive a model of the molecular mechanisms

underlying the biology of lipid chaperones and how these mole-

cules regulate an adipose-derived lipid hormone to generate

their remarkable systemic effects.

How de novo lipogenesis in adipose tissue is affected by meta-

bolic syndrome has remained an unresolved issue. Emerging ev-

idence has suggested that adipose tissue has reduced lipid syn-

thesis capacity in obese mice and human beings (Moraes et al.,

2003; Nadler et al., 2000). Additionally, genetic or pharmacologi-

cal manipulations that boost de novo lipogenesis in adipose tissue

(even though this sometimes leads to expansion of the fat depot)

are associated with improved metabolic homeostasis (Kuriyama

et al., 2005; Waki et al., 2007), an outcome that is very different

from that caused by dietary obesity (Kim et al., 2007; Watkins

et al., 2002). One explanation for this is likely to be related to the

differences in tissue and serum fatty acid profiles under the two

obese conditions. The systemic approaches employed in our

study demonstrated that in WT animals, consuming a HFD re-

sulted in increased lipidcontent of adipose tissue, and the compo-

sition of this tissue did not differ from those of muscle or liver as the

same lipids contributed to the systemic circulation. In contrast,

enhanced de novo lipogenesis in adipose tissue, which occurs

in the absence of lipid chaperons, actively alters tissue and serum

fatty acids, particularly palmitoleate, contributing to improved

metabolic homeostasis regardless of the total lipid mass.

Our results also raise the possibility that palmitoleate is a major

signaling lipidproduced from adipose tissue. Severalproperties of

this particular fatty acid fit well into a regulatory role as an adipose
942 Cell 134, 933–944, September 19, 2008 ª2008 Elsevier Inc.
tissue-derived hormone. For example, even though fatty acids of

all chain lengths and saturation are produced as intermediate

products, only palmitoleate is significantly and abundantly accu-

mulated by elevated de novo lipogenesis in adipose tissue. This

is potentially due to enzymatic specificity of FAS and coordinated

regulation of SCD-1. As a result, palmitoleate might be the only

fatty acid that could substantially change serum fatty acid compo-

sition in relation to alterations in lipid metabolism in adipose tissue.

Unlike its saturated counterpart palmitate, which is already highly

enriched in the sn-1 position of phospholipids and triglycerides

and is resistant to further enrichment, newly synthesized palmito-

leate can be efficiently incorporated into different lipid classes and

dramatically alter its enrichment in a variety of compartments. The

low basal levels and rapid fluctuations reflecting de novo lipogen-

esis again support the notion that palmitoleate is suitable to serve

as a regulatory signal or a hormone. This characteristic also distin-

guishes palmitoleate from oleate, which is very abundant in most

tissues and rarely exhibits substantial concentration changes

under normal physiological conditions. Hence, palmitoleate has

the capacity to serve as a lipid signal that mediates communica-

tions between adipose and other tissues, and we suggest that it

be considered a ‘‘lipokine’’ (Figure 7G).

The highly coordinated regulation of lipid flux and metabolism

suggests that adipose-specific activation of de novo lipogenesis

might lead to a beneficial general metabolic profile through its

systemic effects. If the increased products of lipogenesis in

adipose tissue can efficiently suppress liver lipid production,

the net outcome of adipose-specific activation of de novo lipo-

genesis would be anticipated to be decreased total body weight

with improved metabolic profiles. This scenario is in contrast to

enhanced lipogenesis in liver, which often increases overall adi-

posity even though both conditions could have elevated serum

palmitoleate (Paillard et al., 2007). This adipose-controlled lipid

profile is observed in FABP�/� mice, which exhibit markedly in-

creased palmitoleate in blood and striking protection against

metabolic disease along with the benefits of SCD-1 activation

in the adipose tissue to convert toxic saturated fatty acids to

unsaturated ones. If similar patterns could be extrapolated to

humans, compositional studies might offer new biomarkers to

monitor disease susceptibility, guide preventive strategies, and

even lead to clinical interventions with naturally occurring lipid

products (Hiraoka-Yamamoto et al., 2004).

EXPERIMENTAL PROCEDURES

Animals

Mice with homozygous null mutations in aP2 and mal1 were backcrossed

more than 12 generations into C57BL/6J genetic background as previously

described (Maeda et al., 2005). WT littermates were used as controls. Mice

were maintained on regular chow diet (RD) or placed on HFD at 4 weeks of

age for 16 weeks to induce dietary obesity. WT Mice on HFD diet were admin-

istered with aP2 inhibitor daily via oral gavage at a dose of 40 mg/kg/day for

2 months. Adipose tissues were collected at the end of the treatment for

gene expression analyses. The Harvard Medical Area Standing Committee

on Animals approved all studies.

Quantitative Lipid Profiling

Lipids from plasma and tissues were extracted in the presence of authentic in-

ternal standards by the method of Folch et al. (1957) with chloroform:methanol

(2:1 v/v). Individual lipid classes were separated by liquid chromatography



(Agilent Technologies model 1100 Series). Each lipid class was transesterified

in 1% sulfuric acid in methanol under a nitrogen atmosphere at 100�C for

45 min. The resulting fatty acid methyl esters were extracted from the mixture

with hexane containing 0.05% butylated hydroxytoluene and prepared for gas

chromatography under nitrogen. Fatty acid methyl esters were separated and

quantified by capillary gas chromatography (Agilent Technologies model 6890)

equipped with a 30 m DB-88MS capillary column (Agilent Technologies) and

a flame-ionization detector.

Adenovirus Production and Infection of Adipocytes and Mouse

Expression and luciferase reporter adenoviruses were constructed as de-

scribed in the Supplemental Data. Five microliters crude virus was used to

infect differentiated adipocytes in 96-well plate for reporter assays. Adenovi-

ruses used to infect mice were purified with CsCl ultracentrifugation and

desalted with a PD 10 column. Adenoviruses were tittered and administrated

via tail vein injection (1011 viral particles per mouse).

Plasma Lipid Extraction, Lipid Treatments, Immunoprecipitation,

and Immunoblotting

Two hundred microliters serum was collected and spun at 13,000 g in a micro-

centrifuge to separate the plasma. Plasma lipids were extracted by the addi-

tion of 0.3 ml 0.5 M KH2PO4, 1.5 ml chloroform, and 0.5 ml methanol. After

vortexing 2 min and centrifugation, the lower phase was collected and evapo-

rated. Lipids were dissolved in 50 ml DMEM with 2% fatty acid-free BSA. Two

microliters of either whole plasma or plasma lipids was used to treat cells in 96-

well plates. Tissue protein lysates was separated with SDS-PAGE gels and

phosphorylated, or total proteins were detected with the following antibodies:

phospho-AKT Serine 473, AKT, insulin receptor, and phospho-tyrosine from

Santa Cruz Biotechnology; IRS-1 and IRS-2 from Upstate; phospho-GSK

and GSK from Cell Signaling Technology; and phospho-insulin receptor

from Calbiochem. For the immunoprecipitation of IRS-1 and IRS-2, 1000 mg

tissue protein lysate was incubated with 3 ml anti-IRS-1 or -2 antibodies and

40 ml Protein A beads (Amersham) overnight. Proteins bound to beads were

eluted with SDS loading buffer.

Lipid Infusion and Hyperinsulinemic-Euglycemic Clamp

Intralipid solution with 2 mM triglycerides:palmitate or palmitoleate was pre-

pared via a previously described protocol with modifications (Stein et al.,

1997). In brief, lipids were dissolved in a solvent containing 5% glycerol and

0.72% phosphocholine in 0.9% saline, heated at 80�C for 10 min, and soni-

cated repeatedly. For TG:palmitoleate, the heating was omitted to avoid oxidi-

zation of the lipids. Lipids will stay in suspension for 1 week and need to be vor-

texed well before loading of the syringe and tubing to prevent clogging. Seven

days before lipid infusion, mice were anesthetized, and an indwelling catheter

was inserted in the left internal jugular vein. After overnight fasting, lipids were in-

fused at a rate of 500 ml/kg/min for 6 hr. At the end of the infusion, insulin (1 U/Kg)

was injected into mice via the infusion tubing, and tissues were collected. For

the determination of serum FFA level during lipid infusion, blood was collected

from mouse tails at different time intervals and spun down for the collection

of plasma. Serum FFAs were determined with a commercial kit (Wako

Chemicals). TG:palmitate and TG:palmitoleate are difficult to dissolve at con-

centrations that are compatible with the infusion rate of hyperinsulinemic-

euglycemic clamp study while maintaining efficient delivery of these lipids.

Therefore, fatty acid:palmitoleate was used for the infusion of mice for clamp

study. Palmitoleate was dissolved in saline containing 2% BSA (vehichle) at

15 mM with repeated sonications and was infused through the tubing at

a rate of 3.3 ml/min for 2 hr. A standard hyperinsulinemic-euglycemic clamp

was performed (Furuhashi et al., 2007). Vehicle or palmitoleate solution was

used to dissolve tracer 3H-glucose so lipid was also infused at 3.3 ml /min

throughout the 4 hr period of clamp study.

SUPPLEMENTAL DATA

Supplemental Data include Supplemental Experimental Procedures and 15

figures and can be found with this article online at http://www.cell.com/cgi/

content/full/134/6/933/DC1/.
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